Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan
Tài liệu tham khảo
Bass, 2007, Optimization of dietary restriction protocols in Drosophila, J. Gerontol. A Biol. Sci. Med. Sci., 62, 1071, 10.1093/gerona/62.10.1071
Breslin, 2004, Comparing functional annotation analyses with Catmap, BMC Bioinformatics, 5, 193, 10.1186/1471-2105-5-193
Bülow, 2010, The Drosophila FoxA ortholog Fork head regulates growth and gene expression downstream of Target of rapamycin, PLoS ONE, 5, e15171, 10.1371/journal.pone.0015171
Chintapalli, 2007, Using FlyAtlas to identify better Drosophila melanogaster models of human disease, Nat. Genet., 39, 715, 10.1038/ng2049
Cooper, 1960, Food preferences of larval and adult Drosophila, Evolution, 14, 41, 10.1111/j.1558-5646.1960.tb03055.x
Corrales-Carvajal, 2016, Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off, eLife, 5, 10.7554/eLife.19920
Dick, 2011, Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila, Genet. Res., 93, 265, 10.1017/S001667231100019X
Gosby, 2011, Testing protein leverage in lean humans: a randomised controlled experimental study, PLoS ONE, 6, e25929, 10.1371/journal.pone.0025929
Grandison, 2009, Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila, Nature, 462, 1061, 10.1038/nature08619
Hao, 2005, Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex, Science, 307, 1776, 10.1126/science.1104882
Hinton, 1956, The effects of arginine, ornithine and citrulline on the growth of Drosophila, Arch. Biochem. Biophys., 62, 78, 10.1016/0003-9861(56)90089-3
Hunt, 1970, A qualitatively minimal amino acid diet for D. melanogaster, Drosoph. Inf. Serv., 45, 179
Itskov, 2014, Automated monitoring and quantitative analysis of feeding behaviour in Drosophila, Nat. Commun., 5, 4560, 10.1038/ncomms5560
Jünger, 2003, The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling, J. Biol., 2, 20
Kirkwood, 1977, Evolution of ageing, Nature, 270, 301, 10.1038/270301a0
Koehnle, 2003, Rats rapidly reject diets deficient in essential amino acids, J. Nutr., 133, 2331, 10.1093/jn/133.7.2331
Kremen, 2013, Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California, J. Anim. Sci., 91, 1270, 10.2527/jas.2011-4503
Layalle, 2008, The TOR pathway couples nutrition and developmental timing in Drosophila, Dev. Cell, 15, 568, 10.1016/j.devcel.2008.08.003
Le Couteur, 2016, The impact of low-protein high-carbohydrate diets on aging and lifespan, Cell. Mol. Life Sci., 73, 1237, 10.1007/s00018-015-2120-y
Lee, 2008, Lifespan and reproduction in Drosophila: New insights from nutritional geometry, Proc. Natl. Acad. Sci. USA, 105, 2498, 10.1073/pnas.0710787105
Levine, 2014, Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population, Cell Metab., 19, 407, 10.1016/j.cmet.2014.02.006
Mair, 2005, Calories do not explain extension of life span by dietary restriction in Drosophila, PLoS Biol., 3, e223, 10.1371/journal.pbio.0030223
Miller, 2005, Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance, Aging Cell, 4, 119, 10.1111/j.1474-9726.2005.00152.x
Millward, 2008, Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health, Am. J. Clin. Nutr., 87, 1576S, 10.1093/ajcn/87.5.1576S
1995
Markow, 2015, The secret lives of Drosophila flies, eLife, 4, e06793, 10.7554/eLife.06793
Piper, 2008, Diet and aging, Cell Metab., 8, 99, 10.1016/j.cmet.2008.06.012
Piper, 2016, Protocols to study aging in Drosophila, Methods Mol. Biol., 1478, 291, 10.1007/978-1-4939-6371-3_18
Piper, 2014, A holidic medium for Drosophila melanogaster, Nat. Methods, 11, 100, 10.1038/nmeth.2731
Ribeiro, 2010, Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila, Curr. Biol., 20, 1000, 10.1016/j.cub.2010.03.061
Rogers, 1965, Amino acid diets and maximal growth in the rat, J. Nutr., 87, 267, 10.1093/jn/87.3.267
Rozin, 1967, Specific aversions as a component of specific hungers, J. Comp. Physiol. Psychol., 64, 237, 10.1037/h0088047
Santesso, 2012, Effects of higher- versus lower-protein diets on health outcomes: a systematic review and meta-analysis, Eur. J. Clin. Nutr., 66, 780, 10.1038/ejcn.2012.37
Schwarzer, 2016, Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition, Science, 351, 854, 10.1126/science.aad8588
Shingleton, 2010, The regulation of organ size in Drosophila: physiology, plasticity, patterning and physical force, Organogenesis, 6, 76, 10.4161/org.6.2.10375
Simpson, 2005, Obesity: the protein leverage hypothesis, Obes. Rev., 6, 133, 10.1111/j.1467-789X.2005.00178.x
Simpson, 2012
Skorupa, 2008, Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster, Aging Cell, 7, 478, 10.1111/j.1474-9726.2008.00400.x
Solon-Biet, 2014, The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice, Cell Metab., 19, 418, 10.1016/j.cmet.2014.02.009
Solon-Biet, 2015, Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice, Cell Rep., 11, 1529, 10.1016/j.celrep.2015.05.007
Sørensen, 2008, Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition, Obesity (Silver Spring), 16, 566, 10.1038/oby.2007.58
Soultoukis, 2016, Dietary protein, metabolism, and aging, Annu. Rev. Biochem., 85, 5, 10.1146/annurev-biochem-060815-014422
Sury, 2010, The SILAC fly allows for accurate protein quantification in vivo, Mol. Cell. Proteomics, 9, 2173, 10.1074/mcp.M110.000323
Walker, 2015, Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila, Curr. Biol., 25, 2621, 10.1016/j.cub.2015.08.043
Williams, 1966, Natural selection, the costs of reproduction, and a refinement of Lack’s principle, Am. Nat., 100, 687, 10.1086/282461
Wong, 2014, Gut microbiota dictates the metabolic response of Drosophila to diet, J. Exp. Biol., 217, 1894