Impact of laponite on the formation of NGHs and its adaptability for use in NGH drilling fluids
Tài liệu tham khảo
Aliabadi, 2015, Experimental study of using CuO nanoparticles as a methane hydrate promoter[J], J. Nat. Gas Sci. Eng., 27, 1518, 10.1016/j.jngse.2015.10.017
Aregbe, 2017, Gas hydrate—properties, formation and benefits[J], Open J. Yangtze Oil Gas, 2, 27, 10.4236/ojogas.2017.21003
Chen, 2018, Production behavior and numerical analysis for 2017 methane hydrate extraction test of Shenhu, South China Sea[J], J. Nat. Gas Sci. Eng., 53, 55, 10.1016/j.jngse.2018.02.029
Chong, 2016, Review of natural gas hydrates as an energy resource: prospects and challenges[J], Appl. Energy, 162, 1633, 10.1016/j.apenergy.2014.12.061
Demirbas, 2010, Methane hydrates as potential energy resource: Part 1–Importance, resource and recovery facilities[J], Energy Convers. Manag., 51, 1547, 10.1016/j.enconman.2010.02.013
Englezos, 1993, Clathrate hydrates[J], Ind. Eng. Chem. Res., 32, 1251, 10.1021/ie00019a001
Farhang, 2014, Influence of sodium halides on the kinetics of CO2 hydrate formation[J], Energy Fuels, 28, 1220, 10.1021/ef401549m
Guo, 2022, Effects of hydrophilic and hydrophobic nano-CaCO3 on kinetics of hydrate formation[J], Energy Sci. Eng., 10, 507, 10.1002/ese3.1042
Huang, 2018, Nanoscale laponite as a potential shale inhibitor in water-based drilling fluid for stabilization of wellbore stability and mechanism study[J], ACS Appl. Mater. Interfaces, 10, 33252, 10.1021/acsami.8b11419
Jatav, 2014, Chemical stability of Laponite in aqueous media[J], Appl. Clay Sci., 97, 72, 10.1016/j.clay.2014.06.004
Jiang, 2011, Polyethylene glycol drilling fluid for drilling in marine gas hydrates-bearing sediments: an experimental study[J], Energies, 4, 140, 10.3390/en4010140
Kakati, 2016, Synergistic effect of Polyvinylpyrrolidone (PVP) and L-tyrosine on kinetic inhibition of CH4 + C2H4 + C3H8 hydrate formation[J], J. Nat. Gas Sci. Eng., 34, 1361, 10.1016/j.jngse.2016.08.027
Karmous, 2009, Charge location effect on the hydration properties of synthetic saponite and hectorite saturated by Na+, Ca2+ cations: XRD investigation[J], Appl. Clay Sci., 46, 43, 10.1016/j.clay.2009.07.007
Leote de Carvalho, 2001, Atomistic computer simulation of the clay–fluid interface in colloidal laponite[J], J. Chem. Phys., 114, 3727, 10.1063/1.1343839
Liu, 2016, A new low-cost drilling fluid for drilling in natural gas hydrate-bearing sediments[J], J. Nat. Gas Sci. Eng., 33, 934, 10.1016/j.jngse.2016.06.017
Liu, 2017, Laponite nanoparticle as a multi-functional additive in water-based drilling fluids[J], J. Mater. Sci., 52, 12266, 10.1007/s10853-017-1375-0
Liu, 2019, Progress in global gas hydrate development and production as a new energy resource[J], Acta Geol. Sin.-Eng. Ed., 93, 731, 10.1111/1755-6724.13876
Liu, 2022, Advances in characterizing gas hydrate formation in sediments with NMR transverse relaxation time[J], Water, 14, 330, 10.3390/w14030330
Luckham, 1999, The colloidal and rheological properties of bentonite suspensions[J], Adv. Colloid Interface Sci., 82, 43, 10.1016/S0001-8686(99)00005-6
Medhi, 2021, Impact of zinc oxide nanoparticles on the rheological and fluid-loss properties, and the hydraulic performance of non-damaging drilling fluid[J], J. Nat. Gas Sci. Eng., 88, 10.1016/j.jngse.2021.103834
Merey, 2018, Does the Mediterranean Sea have potential for producing gas hydrates?[J], J. Nat. Gas Sci. Eng., 55, 113, 10.1016/j.jngse.2018.04.029
Mohamed Salah, 2011, Hydration behaviour of synthetic saponite at variable relative humidity[J], Bull. Mater. Sci., 34, 1263, 10.1007/s12034-011-0244-8
Morrow, 2013, Structure, energetics, and dynamics of smectite clay interlayer hydration: molecular dynamics and metadynamics investigation of Na-hectorite[J], J. Phys. Chem. C, 117, 5172, 10.1021/jp312286g
Müller-Vonmoos, 1993, Geotechnik und Entsorgung[M]//Tonminerale und Tone, Steinkopff, 312
Najibi, 2015, Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS[J], J. Nat. Gas Sci. Eng., 23, 315, 10.1016/j.jngse.2015.02.009
Ning, 2013, Invasion of drilling mud into gas-hydrate-bearing sediments. Part II: effects of geophysical properties of sediments[J], Geophys. J. Int., 193, 1385, 10.1093/gji/ggt016
Ruzicka, 2011, A fresh look at the Laponite phase diagram[J], Soft Matter, 7, 1268, 10.1039/c0sm00590h
Ruzicka, 2011, A fresh look at the Laponite phase diagram[J], Soft Matter, 7, 1268, 10.1039/c0sm00590h
Sadeq, 2018
Sadeq, 2018, Experimental pore-scale analysis of carbon dioxide hydrate in sandstone via X-Ray micro-computed tomography[J], Int. J. Greenh. Gas Control, 79, 73, 10.1016/j.ijggc.2018.10.006
Sajjadian, 2020, Experimental evaluation of nanomaterials to improve drilling fluid properties of water-based muds HP/HT applications[J], J. Petrol. Sci. Eng., 190, 10.1016/j.petrol.2020.107006
Saleh, 2022, Hydrophobic polymer-modified nanosilica as effective shale inhibitor for water-based drilling mud[J], J. Petrol. Sci. Eng., 209, 10.1016/j.petrol.2021.109868
Shouwei, 2018
Skovborg, 1993, Measurement of induction times for the formation of methane and ethane gas hydrates[J], Chem. Eng. Sci., 48, 445, 10.1016/0009-2509(93)80299-6
Sloan, 2003, Fundamental principles and applications of natural gas hydrates[J], Nature, 426, 353, 10.1038/nature02135
Sloan, 2005, A changing hydrate paradigm-from apprehension to avoidance to risk management[J], Fluid Phase Equil., 228, 67, 10.1016/j.fluid.2004.08.009
Sloan, 2007
Sun, 2015, The effect of drilling mud properties on shallow lateral resistivity logging of gas hydrate bearing sediments[J], J. Petrol. Sci. Eng., 127, 259, 10.1016/j.petrol.2014.12.015
Sun, 2021, Hydrate formation from clay bound water for CO2 storage[J], Chem. Eng. J., 406, 10.1016/j.cej.2020.126872
Sun, 2022, Imitating possible consequences of drilling through marine hydrate reservoir[J], Energy, 239, 10.1016/j.energy.2021.121802
Thompson, 1992, The nature of laponite and its aqueous dispersions[J], J. Colloid Interface Sci., 151, 236, 10.1016/0021-9797(92)90254-J
Valencia, 2018, Novel insights on swelling and dehydration of laponite[J], Colloid Interface Sci. Commun., 23, 1, 10.1016/j.colcom.2018.01.001
Valencia, 2018, Novel insights on swelling and dehydration of laponite[J], Colloid Interface Sci. Commun., 23, 1, 10.1016/j.colcom.2018.01.001
Velde, 2008
Vinci, 2020, Influence of layer charge on hydration properties of synthetic octahedrally-charged Na-saturated trioctahedral swelling phyllosilicates[J], Appl. Clay Sci., 184, 10.1016/j.clay.2019.105404
Wang, 2018, Study of the mechanism of hydrate formation promoted by hydrophobic nano-SiO2[J], Energy Sources, Part A Recovery, Util. Environ. Eff., 40, 2257, 10.1080/15567036.2018.1477879
Wang, 2019, Effect of hydrophilic silica nanoparticles on hydrate formation: insight from the experimental study[J], J. Energy Chem., 30, 90, 10.1016/j.jechem.2018.02.021
Wang, 2020, Classification and physical characteristics of bound water in loess and its main clay minerals[J], Eng. Geol., 265, 10.1016/j.enggeo.2019.105394
Wang, 2022, Mechanisms of synergistic inhibition of hydrophilic amino acids with kinetic inhibitors on hydrate formation[J], Fuel, 321, 10.1016/j.fuel.2022.124012
Wei, 2021, Evaluation of physical parameters and construction of the classification system of natural gas hydrate in the Northern South China sea[J], Energy Fuels, 35, 7637, 10.1021/acs.energyfuels.0c04043
Wu, 2012, Influence of super-absorbent polymer on the growth rate of gas hydrate[J], Saf. Sci., 50, 865, 10.1016/j.ssci.2011.08.017
Xiong, 2019, Performance evaluation of laponite as a mud-making material for drilling fluids[J], Petrol. Sci., 16, 890, 10.1007/s12182-018-0298-y
Zhao, 2016, Effect of inorganic cations on the rheological properties of polyacrylamide/xanthan gum solution[J], J. Nat. Gas Sci. Eng., 31, 283, 10.1016/j.jngse.2016.01.047