Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review

Renewable and Sustainable Energy Reviews - Tập 15 - Trang 1502-1512 - 2011
H.A. Mohammed1, G. Bhaskaran1, N.H. Shuaib1, R. Saidur2
1Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Km 7, Jalan Kajang-Puchong, 43009 Kajang, Selangor, Malaysia
2Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Tài liệu tham khảo

Tuckerman, 1981, High-performance heat sinking for VLSI, IEEE Electron Dev Lett, EDL-2, 126, 10.1109/EDL.1981.25367 Kandlikar, 2006 Das, 2008 Kang, 2002, The manufacture and test of (110) orientated silicon based micro heat exchanger, Tamkang J Sci Eng, 5, 129 Kanlayasiri, 2004, A nickel aluminide microchannel array heat exchanger for high-temperature applications, J Manuf Process, 6, 200, 10.1016/S1526-6125(04)70060-2 Brandner, 2006, Concepts and realization of microstructure heat exchangers for enhanced heat transfer, Exp Therm Fluid Sci, 30, 801, 10.1016/j.expthermflusci.2006.03.009 Brandner, 2007, Microstructure devices for efficient heat transfer, Bremen Microgravity Sci Technol, 10.1007/BF02915746 Morini, 2004, Single-phase convective heat transfer in microchannels: a review of experimental results, Int J Therm Sci, 43, 631, 10.1016/j.ijthermalsci.2004.01.003 Yener, 2005 Bayraktar, 2006, Review: characterization of liquid flows in microfluidic systems, Int J Heat Mass Transfer, 49, 815, 10.1016/j.ijheatmasstransfer.2005.11.007 Mapa, 2005 Kang, 2007, Analysis of effectiveness and pressure drop in micro cross-flow heat exchanger, Appl Therm Eng, 27, 877, 10.1016/j.applthermaleng.2006.09.002 Lu, 2008, Experimental study of fluid flow in microchannel Senta, 2007, Design of manifold for nanofluid flow in microchannels, 1 Luoa, 2008, Experimental study of constructual distributor for flow equidistribution in a mini cross flow heat exchanger (MCHE), Chem Eng Process, 47, 229, 10.1016/j.cep.2007.02.028 García-Hernando, 2009, Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger, Int J Heat Mass Transfer, 52, 5433, 10.1016/j.ijheatmasstransfer.2009.06.034 Park, 2009, vol. 15, 1373 Park, 2008, Friction factor and heat transfer in multiple microchannels with uniform flow distribution, Int J Heat Mass Transfer, 51, 4535, 10.1016/j.ijheatmasstransfer.2008.02.009 Pantzali, 2009, Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE), Chem Eng Sci, 64, 3290, 10.1016/j.ces.2009.04.004 Farajollahi, 2010, Heat transfer of nanofluids in a shell and tube heat exchanger, Int J Heat Mass Transfer, 53, 12, 10.1016/j.ijheatmasstransfer.2009.10.019 Raja, 2005, Heat transfer and fluid flow in constructual heat exchanger Foli, 2006, Optimization of micro heat exchanger: CFD, analytical approach and multi-objective evolutionary algorithms, Int J Heat Mass Transfer, 49, 1090, 10.1016/j.ijheatmasstransfer.2005.08.032 Pääkkönen, 2007, vol. RP5 Hasan, 2009, Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, Int J Therm Sci, 48, 1607, 10.1016/j.ijthermalsci.2009.01.004 Chein, 2009, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int J Therm Sci, 48, 1627, 10.1016/j.ijthermalsci.2008.12.019 Al-Nimr, 2009, Fully developed thermal behaviors for parallel flow microchannel heat exchanger, Int Commun Heat Mass Transfer, 36, 385, 10.1016/j.icheatmasstransfer.2009.01.010 Li, 2009, A review on development of nanofluid preparation and characterization, Powder Technol, 196, 89, 10.1016/j.powtec.2009.07.025 Eastman, 1997, Enhanced thermal conductivity through the development of nanofluids, 3 Wei, 2009, Synthesis and thermal conductivity of Cu2O nanofluids, Int J Heat Mass Transfer, 52, 4371, 10.1016/j.ijheatmasstransfer.2009.03.073 Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J Heat Transfer, 121, 280, 10.1115/1.2825978 Hong, 2005, Study of the enhanced thermal conductivity of Fe nanofluids, J Appl. Phys, 97, 1 Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particle, J Appl Phys, 91, 4568, 10.1063/1.1454184 Peng, 2007, Influence factors on suspension stability of nanofluids, J Zhejiang Univ: Eng Sci, 41, 577 Wang, 2003, Research on stability of nano-particle suspension, J Univ Shanghai Sci Technol, 25, 209 Xuan, 2000, Heat transfer enhancement of nanofluids, Int J Heat Mass Transfer, 21, 58 Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluid, Int J Therm Sci, 44, 367, 10.1016/j.ijthermalsci.2004.12.005 Wen, 2009, Review of nanofluids for heat transfer applications, Particuology, 7, 141, 10.1016/j.partic.2009.01.007 Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl Phys Lett, 79, 2252, 10.1063/1.1408272 Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, 7, 227, 10.2963/jjtp.7.227 Xuan, 2000, Heat transfer enhancement of nanofluids, Int J Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3 Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int J Heat Mass transfer, 45, 855, 10.1016/S0017-9310(01)00175-2 Zhang, 2006, Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluid, Int J Thermophys, 27, 558, 10.1007/s10765-006-0054-1 Nagasaka, 1981, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wires method, J Phys E: Sci Instrum, 14, 1435, 10.1088/0022-3735/14/12/020 Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J Heat Transfer, 125, 567, 10.1115/1.1571080 Czarnetzki, 1995, Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity, Int J Thermophys, 16, 413, 10.1007/BF01441907 Kakaç, 2009, Review of convective heat transfer enhancement with nanofluids, Int J Heat Mass Transfer, 52, 3187, 10.1016/j.ijheatmasstransfer.2009.02.006 Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int J Therm Sci, 46, 1, 10.1016/j.ijthermalsci.2006.06.010 Li, 2002, Experimental viscosity measurements for copper oxide nanoparticle suspensions, Tsinghua Sci Technol, 7, 198 Das, 2003, Pool boiling characteristics of nanofluids, Int J Heat Mass Transfer, 46, 851, 10.1016/S0017-9310(02)00348-4 Ding, 2005, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int J Heat Mass Transfer, 49, 240 Kim, 2009, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr Appl Phys, 9, e119, 10.1016/j.cap.2008.12.047 Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew Sust Energy Rev, 11, 512, 10.1016/j.rser.2005.01.010 Chein, 2005, Analysis of microchannel heat sink performance using nanofluids, Appl Therm Eng, 25, 3104, 10.1016/j.applthermaleng.2005.03.008 Chein, 2007, Experimental microchannel heat sink performance studies using nanofluids, Int J Therm Sci, 46, 57, 10.1016/j.ijthermalsci.2006.03.009 Pantzali, 2009, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int J Heat Fluid Flow, 30, 691, 10.1016/j.ijheatfluidflow.2009.02.005 Jang, 2006, Cooling performance of a microchannel heat sink with nanofluids, Appl Therm Eng, 26, 2457, 10.1016/j.applthermaleng.2006.02.036 Jang, 2004, The role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl Phys Lett, 84, 4316, 10.1063/1.1756684 Wang, 2008, A review on nano-fluids. Part 1: Theoretical and numerical investigations, Braz J Chem Eng, 25, 613, 10.1590/S0104-66322008000400001