4D-LQTA-QSAR and docking study on potent gram-negative specific LpxC inhibitors: a comparison to CoMFA modeling

Molecular Diversity - Tập 16 - Trang 203-213 - 2011
Jahan B. Ghasemi1, Reihaneh Safavi-Sohi1, Euzébio G. Barbosa2
1Department of Chemistry, Faculty of Sciences, K.N.Toosi University of Technology, Tehran, Iran
2University of Campinas, Institute of Chemistry, Campinas, Brazil

Tóm tắt

A quasi 4D-QSAR has been carried out on a series of potent Gram-negative LpxC inhibitors. This approach makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package. This new methodology is based on the generation of a conformational ensemble profile, CEP, for each compound instead of only one conformation, followed by the calculation intermolecular interaction energies at each grid point considering probes and all aligned conformations resulting from MD simulations. These interaction energies are independent variables employed in a QSAR analysis. The comparison of the proposed methodology to comparative molecular field analysis (CoMFA) formalism was performed. This methodology explores jointly the main features of CoMFA and 4D-QSAR models. Step-wise multiple linear regression was used for the selection of the most informative variables. After variable selection, multiple linear regression (MLR) and partial least squares (PLS) methods used for building the regression models. Leave-N-out cross-validation (LNO), and Y-randomization were performed in order to confirm the robustness of the model in addition to analysis of the independent test set. Best models provided the following statistics : $${{R}^{2}= 0.943, {q}^{2}_{\rm LOO}= 0.802, {q}^{2}_{\rm LNO}= 0.798, {R}^{2}_{\rm Pred}= 0.936}$$ (PLS) and $${{R}^{2 }= 0.948, {q}^{2}_{\rm LOO}= 0.823, {q}^{2}_{\rm LNO}= 0.818, {R}^{2}_{\rm Pred} = 0.928}$$ (MLR). Docking study was applied to investigate the major interactions in protein–ligand complex with CDOCKER algorithm. Visualization of the descriptors of the best model helps us to interpret the model from the chemical point of view, supporting the applicability of this new approach in rational drug design.

Tài liệu tham khảo

Pirrung MC, Tumey LN, McClerren AL, Raetz CRH (2003) High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure–Activity Relationships In Novel Inhibitors Of Escherichia coli LpxC: In vitro enzyme inhibition and antibacterial properties. J Am Chem Soc 125: 1575–1586. doi:10.1021/ja0209114 Hernick M, Fierke CA (2006) Molecular recognition by Escherichia coli UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase is modulated by bound metal ions. Biochemistry 45: 14573–14581. doi:10.1021/bi061625y McKeegan KS, Borges-Walmsley MI, Walmsley AR (2002) Microbial and viral drug resistance mechanisms. Trends Microbiol 10: s8–s14. doi:10.1016/S0966-842X(02)02429-0 Hogan D, Kolter R (2002) Why are bacteria refractory to antimicrobials?. Curr Opin Microbiol 5: 472–477. doi:10.1016/S1369-5274(02)00357-0 Gennadios HA, Whittington DA, Li X, Fierke CA, Christianson DW (2006) Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase. Biochemistry 45: 7940–7948. doi:10.1021/bi060823m Hernick M, Fierke CA (2005) Zinc hydrolases: the mechanisms of zinc-dependent deacetylases. Arch Biochem Biophys 433: 71–84. doi:10.1016/j.abb.2004.08.006 Mansoor UF, Vitharana D, Reddy PA, Daubaras DL, McNicholas P, Orth P, Black T, Siddiqui MA (2010) Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett 21: 1155–1161. doi:10.1016/j.bmcl.2010.12.111 Barb AW, Zhou P (2008) Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 9: 9–15 Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ (2010) 4D-QSAR: perspectives in drug design. Molecules 15: 3281–3294. doi:10.3390/molecules15053281 Shim J, MacKerell AD Jr (2011) Computational ligand-based rational design: role of conformational sampling and force fields in model development. Med Chem Commun 2: 356–370. doi:10.1039/C1MD00044F Hopfinger A, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119: 10509–10524. doi:10.1021/ja9718937 Bhonsle JB, Wang Z, Tamamura H, Fujii N, Peiper SC, Trent JO (2005) A simple, automated Quasi 4D QSAR, Quasi multi way PLS approach to develop highly predictive qsar models for highly flexible cxcr4 inhibitor cyclic pentapeptide ligands using scripted common molecular modeling tools. QSAR Comb Sci 24: 620–630. doi:10.1002/qsar.200430912 Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967. doi:10.1021/ja00226a005 Ghasemi JB, Salahinejad M, Rofouei MK (2011) Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol Chem 1–17. doi:10.1080/10610278.2011.581281 Martins JPA, Barbosa EG, Pasqualoto KFM, Ferreira MMC (2009) LQTA-QSAR: a new 4D-QSAR methodology. J Chem Inf Model 49: 1428–1436. doi:10.1021/ci900014f Kusalik PG, Svishchev IM (1994) The spatial structure in liquid water. Science 265: 1219. doi:10.1126/science.265.5176.1219 Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98: 10089. doi:10.1063/1.464397 Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45: 1196–1199. doi:10.1103/PhysRevLett.45.1196 Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684. doi:10.1063/1.448118 Itai A, Tomioka N (1993) In: Kubinyi H (ed) 3D QSAR in drug design: theory, methods and applications, vol 1. Kluwer Academic Publishers, Leiden, pp 200–206 Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10: 95–115. doi:10.2174/156802610790232260 Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22: 69–77. doi:10.1002/qsar.200390007 Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20: 269–276. doi:10.1016/S1093-3263(01)00123-1 Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20: 770–787. doi:10.1590/S0103-50532009000400021 Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10: 982–1012. doi:10.1002/jcc.540100804 Wang R, Gao Y, Liu L, Lai L (1998) All-orientation search and all-placement search in comparative molecular field analysis. J Mol Model 4: 276–283. doi:10.1007/s008940050085 Momany FA, Rone R (1992) Validation of the general purpose QUANTA®3.2/CHARMm® force field. J Comput Chem 13: 888–900. doi:10.1002/jcc.540130714 Discovery Studio Accelrys Software Inc SD, CA. Dragos H, Gilles M, Alexandre V (2009) Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J Chem Inf Model 49: 1762–1776. doi:10.1021/ci9000579 Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45: 839–849. doi:10.1021/ci0500381 Melagraki G, Afantitis A, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2007) A novel QSPR model for predicting (lower critical solution temperature) in polymer solutions using molecular descriptors. J Mol Model 13: 55–64. doi:10.1007/s00894-006-0125-z Jackman JE, Raetz CRH, Fierke CA (1999) UDP-3-O-(R-3- hydroxymyristoyl)- N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38: 1902–1911. doi:10.1021/bi982339s Whittington DA, Rusche KM, Shin H, Fierke CA, Christianson DW (2003) Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci USA 100: 8146. doi:10.1073/pnas.1432990100