LncRNA ENST00000602558.1 regulates ABCG1 expression and cholesterol efflux from vascular smooth muscle cells through a p65-dependent pathway

Atherosclerosis - Tập 285 - Trang 31-39 - 2019
Can Cai1, Huijuan Zhu1, Xiaotong Ning1, Lin Li1, Bin Yang1, Shufeng Chen1, Laiyuan Wang1, Xiangfeng Lu1, Dongfeng Gu1
1Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China

Tài liệu tham khảo

Wu, 2018, Prevention of atherosclerosis by berries: the case of blueberries, J. Agric. Food Chem., 66, 9172, 10.1021/acs.jafc.8b03201 Rader, 2008, Translating molecular discoveries into new therapies for atherosclerosis, Nature, 451, 904, 10.1038/nature06796 Rader, 2005, Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell?, Cell Metabol., 1, 223, 10.1016/j.cmet.2005.03.005 Tabas, 2015, Recent insights into the cellular biology of atherosclerosis, J. Cell Biol., 209, 13, 10.1083/jcb.201412052 Chistiakov, 2015, Vascular smooth muscle cell in atherosclerosis, Acta Physiol., 214, 33, 10.1111/apha.12466 Louis, 2010, Vascular smooth muscle cell motility: from migration to invasion, Exp. Clin. Cardiol., 15, e75 Chistiakov, 2016, Macrophage-mediated cholesterol handling in atherosclerosis, J. Cell Mol. Med., 20, 17, 10.1111/jcmm.12689 Yu, 2013, Foam cells in atherosclerosis, Clin. Chim. Acta, 424, 245, 10.1016/j.cca.2013.06.006 Shankman, 2015, KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis, Nat. Med., 21, 628, 10.1038/nm.3866 Rosenson, 2011, HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events, Clin. Chem., 57, 392, 10.1373/clinchem.2010.155333 Westerterp, 2018, Cholesterol efflux pathways suppress inflammasome activation, vol. 138, 898 Phillips, 2014, Molecular mechanisms of cellular cholesterol efflux, J. Biol. Chem., 289, 24020, 10.1074/jbc.R114.583658 Li, 2013, ATP-binding cassette transporters and cholesterol translocation, IUBMB Life, 65, 505, 10.1002/iub.1165 Wang, 2000, Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1, J. Biol. Chem., 275, 33053, 10.1074/jbc.M005438200 Neufeld, 2014, Cellular localization and trafficking of the human ABCA1 transporter, Biology, 3, 27584, 10.3390/biology3040781 Kobayashi, 2006, Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1, J. Lipid Res., 47, 1791, 10.1194/jlr.M500546-JLR200 Small, 2003, Role of ABC transporters in secretion of cholesterol from liver into bile, Proc. Natl. Acad. Sci. U. S. A, 100, 4, 10.1073/pnas.0237205100 Adorni, 2007, The roles of different pathways in the release of cholesterol from macrophages, J. Lipid Res., 48, 2453, 10.1194/jlr.M700274-JLR200 Yvan-Charvet, 2007, Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice, J. Clin. Investig., 117, 3900 Sun, 2012, The noncanonical NF-kappaB pathway, Immunol. Rev., 246, 125, 10.1111/j.1600-065X.2011.01088.x Lorkowski, 2001, Genomic sequence and structure of the human ABCG1 (ABC8) gene, Biochem. Biophys. Res. Commun., 280, 121, 10.1006/bbrc.2000.4089 Zhao, 2014, NF-kappaB suppresses the expression of ATP-binding cassette transporter A1/G1 by regulating SREBP-2 and miR-33a in mice, Int. J. Cardiol., 171, e93, 10.1016/j.ijcard.2013.11.093 Mazidi, 2017, Relationship between long noncoding RNAs and physiological risk factors of cardiovascular disease, J. Clin. Lipidol., 11, 617, 10.1016/j.jacl.2017.03.009 Wang, 2016, Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling, Hypertension, 68, 736, 10.1161/HYPERTENSIONAHA.116.07259 Li, 2018, Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease, Atherosclerosis, 275, 359, 10.1016/j.atherosclerosis.2018.06.866 Zhao, 2017, Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease, Nat. Genet., 49, 1450, 10.1038/ng.3943 van der Harst, 2018, Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease, Circ. Res., 122, 433, 10.1161/CIRCRESAHA.117.312086 Klarin, 2017, Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease, Nat. Genet., 49, 1392, 10.1038/ng.3914 Willer, 2013, Discovery and refinement of loci associated with lipid levels, Nat. Genet., 45, 1274, 10.1038/ng.2797 Teslovich, 2010, Biological, clinical and population relevance of 95 loci for blood lipids, Nature, 466, 707, 10.1038/nature09270 Spracklen, 2017, Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels, Hum. Mol. Genet., 26, 1770, 10.1093/hmg/ddx062 Wang, 2007, Different cellular traffic of LDL-cholesterol and acetylated LDL-cholesterol leads to distinct reverse cholesterol transport pathways, J. Lipid Res., 48, 633, 10.1194/jlr.M600470-JLR200 Schmitz, 2001, Role of ABCG1 and other ABCG family members in lipid metabolism, J. Lipid Res., 42, 1513, 10.1016/S0022-2275(20)32205-7 Xue, 2010, High glucose promotes intracellular lipid accumulation in vascular smooth muscle cells by impairing cholesterol influx and efflux balance, Cardiovasc. Res., 86, 141, 10.1093/cvr/cvp388 Muppirala, 2011, Predicting RNA-protein interactions using only sequence information, BMC Bioinf., 12, 489, 10.1186/1471-2105-12-489 Lewis, 2011, PRIDB: a Protein-RNA interface database, Nucleic Acids Res., 39, D277, 10.1093/nar/gkq1108 Ma, 2011, Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis, Cardiovasc. Res., 92, 504, 10.1093/cvr/cvr245 Moore, 2013, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol., 13, 709, 10.1038/nri3520 Gomez, 2012, Smooth muscle cell phenotypic switching in atherosclerosis,, Cardiovasc. Res., 95, 156, 10.1093/cvr/cvs115 Ma, 2007, Anti-atherosclerotic effects of sirolimus on human vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol., 292, H2721, 10.1152/ajpheart.01174.2006 Uchida, 2015, Long noncoding RNAs in cardiovascular diseases, Circ. Res., 116, 737, 10.1161/CIRCRESAHA.116.302521 Sallam, 2018, Long noncoding RNA discovery in cardiovascular disease: decoding form to function, Circ. Res., 122, 155, 10.1161/CIRCRESAHA.117.311802 Johansen, 2011, Genetic determinants of plasma triglycerides, J. Lipid Res., 52, 189, 10.1194/jlr.R009720 Schumacher, 2017, ABC transport proteins in cardiovascular disease-A brief summary, Molecules, 22, 589, 10.3390/molecules22040589 Oram, 2006, ATP-Binding cassette cholesterol transporters and cardiovascular disease, Circ. Res., 99, 1031, 10.1161/01.RES.0000250171.54048.5c Porsch-Ozcurumez, 2001, The zinc finger protein 202 (ZNF202) is a transcriptional repressor of ATP binding cassette transporter A1 (ABCA1) and ABCG1 gene expression and a modulator of cellular lipid efflux, J. Biol. Chem., 276, 12427, 10.1074/jbc.M100218200 Daffu, 2015, RAGE suppresses ABCG1-mediated macrophage cholesterol efflux in diabetes, Diabetes, 64, 4046, 10.2337/db15-0575 Ma, 2014, Cholesterol efflux is LXRalpha isoform-dependent in human macrophages, BMC Cardiovasc. Disord., 14, 80, 10.1186/1471-2261-14-80 Nelson, 2017, EEPD1 is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux, Arterioscler. Thromb. Vasc. Biol., 37, 423, 10.1161/ATVBAHA.116.308434 Lake, 2017, TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis, Eur. Heart J., 38, 3579, 10.1093/eurheartj/ehx315 Sallam, 2018, Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA, Nat. Med., 24, 304, 10.1038/nm.4479 Chistiakov, 2017, Mechanisms of foam cell formation in atherosclerosis, J. Mol. Med. (Berl.), 95, 1153, 10.1007/s00109-017-1575-8