Mechanical response of layered titanate nanowires
Tài liệu tham khảo
Diebold, 2003, The surface science of titanium dioxide, Surf. Sci. Rep., 48, 53, 10.1016/S0167-5729(02)00100-0
Phillips, 1997, The influence of fat substitutes based on protein and titanium dioxide on the sensory properties of lowfat milks, J. Dairy Sci., 80, 2726, 10.3168/jds.S0022-0302(97)76234-9
O'Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, 353, 737, 10.1038/353737a0
Gust, 2001, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res., 34, 40, 10.1021/ar9801301
Pozzo, 1997, Supported titanium oxide as photocatalyst in water decontamination: state of the art, Catal. Today, 39, 219, 10.1016/S0920-5861(97)00103-X
Matthews, 1987, Photooxidation of organic impurities in water using thin films of titanium dioxide, J. Phys. Chem., 91, 3328, 10.1021/j100296a044
Malato, 2009, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147, 1, 10.1016/j.cattod.2009.06.018
Fujishima, 2000, TiO2 photocatalysts and diamond electrodes, Electrochim. Acta, 45, 4683, 10.1016/S0013-4686(00)00620-4
Fujishima, 1999
Nakata, 2012, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C Photochem. Rev., 13, 169, 10.1016/j.jphotochemrev.2012.06.001
Strukov, 2008, The missing memristor found, Nature, 453, 80, 10.1038/nature06932
Dutta, 1999, Interaction of carbon monoxide with anatase surfaces at high Temperatures: optimization of a carbon monoxide sensor, J. Phys. Chem. B, 103, 4412, 10.1021/jp9844718
Arafat, 2012, Gas sensors based on one dimensional nanostructured metal-oxides: a review, Sensors, 12, 7207, 10.3390/s120607207
Wu, 2013, Enhanced supercapacitance in anodic TiO2nanotube films by hydrogen plasma treatment, Nanotechnology, 24, 10.1088/0957-4484/24/45/455401
Salari, 2011, Enhancement of the capacitance in TiO 2 nanotubes through controlled introduction of oxygen vacancies, J. Mater. Chem., 21, 5128, 10.1039/c0jm04085a
Xu, 2007, Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries, Electrochim. Acta, 52, 8044, 10.1016/j.electacta.2007.06.077
Horváth, 2012, Dye metachromasy on titanate nanowires: sensing humidity with reversible molecular dimerization, J. Mater. Chem., 22, 8778, 10.1039/c2jm16443d
Byrne, 2007, Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites, J. Mater. Chem., 17, 2351, 10.1039/b612886f
Mettan, 2019, Tailoring thermal conduction in anatase TiO2, Commun. Phys., 2, 10.1038/s42005-019-0224-7
Hernández-Hipólito, 2014, Biodiesel production with nanotubular sodium titanate as a catalyst, Catal. Today, 220–222, 4, 10.1016/j.cattod.2013.09.003
Horváth, 2016
Xiao, 2010, The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells, Electrochim. Acta, 55, 4573, 10.1016/j.electacta.2010.03.011
Zhang, 2006, Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion, J. Phys. Chem. B, 110, 21890, 10.1021/jp0640880
Li, 2008, Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells, J. Photochem. Photobiol. Chem., 195, 247, 10.1016/j.jphotochem.2007.10.010
Zhi, 2016, Flexible all solid state supercapacitor with high energy density employing black titania nanoparticles as a conductive agent, Nanoscale, 8, 4054, 10.1039/C5NR08136J
Dkhissi, 2015, Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%, J. Power Sources, 278, 325, 10.1016/j.jpowsour.2014.12.104
Liu, 2014, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photon., 8, 133, 10.1038/nphoton.2013.342
Jang, 2014, Direct growth of titania nanotubes on plastic substrates and their application to flexible gas sensors, Sensor. Actuator. B Chem., 199, 361, 10.1016/j.snb.2014.03.113
Tétreault, 2010, High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires, ACS Nano, 4, 7644, 10.1021/nn1024434
Horváth, 2014, Probing titanate nanowire surface acidity through methylene blue adsorption in colloidal suspension and on thin films, J. Colloid Interface Sci., 416, 190, 10.1016/j.jcis.2013.10.049
Salvetat, 1999, Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Adv. Mater., 11, 161, 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-J
Salvetat, 1999, Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., 82, 944, 10.1103/PhysRevLett.82.944
Gere, 1990
Kis, 2004, Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nat. Mater., 3, 153, 10.1038/nmat1076
Bo, 2014, Mechanical bending properties of sodium titanate (Na2Ti3O7) nanowires, R. Soc. Chem., 4, 56970
Bo, 2018, Atypical defect motions in brittle layered sodium titanate nanowires, J. Phys. Chem. Lett., 9, 6052, 10.1021/acs.jpclett.8b02349
Humar, 2006, Mechanical properties of titania-derived nanoribbons, Nanotechnology, 17, 3869, 10.1088/0957-4484/17/15/043
Chen, 2006, Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett., 96, 10.1103/PhysRevLett.96.075505
L. Ciric, Unpublished, n.d., personal communication.
Zhang, 2018, Atomistic simulations of superplasticity and amorphization of nanocrystalline anatase TiO2, Extreme Mech. Lett., 22, 131, 10.1016/j.eml.2018.05.009
Wu, 2005, Mechanical properties of ultrahigh-strength gold nanowires, Nat. Mater., 4, 525, 10.1038/nmat1403
Rossi, 2020, Thermal coarsening of individual titanate nanowires and their assemblies: surface vs. bulk diffusion, Ceram. Int., 10.1016/j.ceramint.2020.03.189