Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis
Tài liệu tham khảo
Adhikari, 2020, Development of a covalent inhibitor of gut bacterial bile salt hydrolases, Nat. Chem. Biol., 16, 318, 10.1038/s41589-020-0467-3
Adhikari, 2021, A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases, ACS Chem. Biol., 16, 1401, 10.1021/acschembio.1c00192
Ahn, 2013, Human gut microbiome and risk for colorectal cancer, J. Natl. Cancer Inst., 105, 1907, 10.1093/jnci/djt300
Arpaia, 2013, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature, 504, 451, 10.1038/nature12726
Axelson, 2000, Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid, Hepatology, 31, 1305, 10.1053/jhep.2000.7877
Begley, 2005, The interaction between bacteria and bile, FEMS Microbiol. Rev., 29, 625, 10.1016/j.femsre.2004.09.003
Brown, 2017, Heat-stabilised rice bran consumption by colorectal cancer survivors modulates stool metabolite profiles and metabolic networks: a randomised controlled trial, Br. J. Nutr., 117, 1244, 10.1017/S0007114517001106
Campbell, 2020, Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells, Nature, 581, 475, 10.1038/s41586-020-2193-0
Cao, 2017, The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids, Immunity, 47, 1182, 10.1016/j.immuni.2017.11.012
Chen, 2021, CAR directs T cell adaptation to bile acids in the small intestine, Nature, 593, 147, 10.1038/s41586-021-03421-6
Chiang, 2013, Bile acid metabolism and signaling, Compr. Physiol., 3, 1191, 10.1002/cphy.c120023
Clements, 1996, Role of the gut in the pathophysiology of extrahepatic biliary obstruction, Gut, 39, 587, 10.1136/gut.39.4.587
Coleman, 1995, Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens, Appl. Environ. Microbiol., 61, 2514, 10.1128/aem.61.7.2514-2520.1995
Coleman, 1980, Membrane lipid composition and susceptibility to bile salt damage, Biochim. Biophys. Acta, 599, 294, 10.1016/0005-2736(80)90075-9
Cross, 2014, A prospective study of serum metabolites and colorectal cancer risk, Cancer, 120, 3049, 10.1002/cncr.28799
Devkota, 2012, Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice, Nature, 487, 104, 10.1038/nature11225
Devlin, 2015, A biosynthetic pathway for a prominent class of microbiota-derived bile acids, Nat. Chem. Biol., 11, 685, 10.1038/nchembio.1864
Doden, 2021, Microbial hydroxysteroid dehydrogenases: From α to omega, Microorganisms, 9, 469, 10.3390/microorganisms9030469
Doden, 2018, Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria, Appl. Environ. Microbiol., 84, 10.1128/AEM.00235-18
Doden, 2021, Completion of the gut microbial epi-bile acid pathway, Gut Microbes, 13, 1, 10.1080/19490976.2021.1907271
Doerner, 1997, Assessment of fecal bacteria with bile acid 7 α-dehydroxylating activity for the presence of bai-like genes, Appl. Environ. Microbiol., 63, 1185, 10.1128/aem.63.3.1185-1188.1997
Dong, 2021, Cytokine regulation and function in T cells, Annu. Rev. Immunol., 39, 51, 10.1146/annurev-immunol-061020-053702
Edenharder, 1989, Characterization of NAD-dependent 3α-and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus., Biochim. Biophys. Acta, Lipids Lipid Metab., 1004, 230, 10.1016/0005-2760(89)90272-5
Elkins, 2001, Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species, Microbiology (Reading), 147, 3403, 10.1099/00221287-147-12-3403
Floreani, 2018, Primary biliary cholangitis: Old and novel therapy, Eur. J. Intern. Med., 47, 1, 10.1016/j.ejim.2017.06.020
Fouts, 2012, Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease, J. Hepatol., 56, 1283, 10.1016/j.jhep.2012.01.019
Franzosa, 2019, Gut microbiome structure and metabolic activity in inflammatory bowel disease, Nat. Microbiol., 4, 293, 10.1038/s41564-018-0306-4
Friedman, 2018, FXR-dependent modulation of the human small Intestinal microbiome by the bBile acid derivative obeticholic acid, Gastroenterology, 155, 1741, 10.1053/j.gastro.2018.08.022
Funabashi, 2020, A metabolic pathway for bile acid dehydroxylation by the gut microbiome, Nature, 582, 566, 10.1038/s41586-020-2396-4
Gadaleta, 2011, Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease, Gut, 60, 463, 10.1136/gut.2010.212159
Gadaleta, 2017, Bile acids and colon cancer: Is FXR the solution of the conundrum?, Mol. Aspects Med., 56, 66, 10.1016/j.mam.2017.04.002
Gadaleta, 2020, Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor, EBioMedicine, 54, 102719, 10.1016/j.ebiom.2020.102719
Gérard, 2013, Metabolism of cholesterol and bile acids by the gut microbiota, Pathogens, 3, 14, 10.3390/pathogens3010014
Gonzalez, 2012, Nuclear receptor control of enterohepatic circulation, Compr. Physiol., 2, 2811, 10.1002/cphy.c120007
Guarner, 2003, Gut flora in health and disease, Lancet, 361, 512, 10.1016/S0140-6736(03)12489-0
Guo, 2016, Bile acids control Inflammation and metabolic disorder through inhibition of NLRP3 inflammasome, Immunity, 45, 802, 10.1016/j.immuni.2016.09.008
Hang, 2019, Bile acid metabolites control TH17 and Treg cell differentiation, Nature, 576, 143, 10.1038/s41586-019-1785-z
Harris, 1978, Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium leptum, Biochim. Biophys. Acta, 528, 148, 10.1016/0005-2760(78)90060-7
Harris, 2018, Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T, Gut Microbes, 9, 523
Huttenhower, 2014, Inflammatory bowel disease as a model for translating the microbiome, Immunity, 40, 843, 10.1016/j.immuni.2014.05.013
Ilan, 2012, Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis, World J. Gastroenterol., 18, 2609, 10.3748/wjg.v18.i21.2609
Inagaki, 2006, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc. Natl. Acad. Sci. USA, 103, 3920, 10.1073/pnas.0509592103
Islam, 2011, Bile acid is a host factor that regulates the composition of the cecal microbiota in rats, Gastroenterology, 141, 1773, 10.1053/j.gastro.2011.07.046
Jacobs, 2016, A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients, Cell. Mol. Gastroenterol. Hepatol., 2, 750, 10.1016/j.jcmgh.2016.06.004
Jansson, 2009, Metabolomics reveals metabolic biomarkers of Crohn’s disease, PLoS ONE, 4, e6386, 10.1371/journal.pone.0006386
Jia, 2018, Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis, Nat. Rev. Gastroenterol. Hepatol., 15, 111, 10.1038/nrgastro.2017.119
Jia, 2020, Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health, Gut Microbes, 11, 1300, 10.1080/19490976.2020.1748261
Jin, 2022, Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome, Cell, 185, 547, 10.1016/j.cell.2021.12.035
Johnson, 1991, Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from human liver, J. Biol. Chem., 266, 10227, 10.1016/S0021-9258(18)99213-6
Jones, 2008, Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome, Proc. Natl. Acad. Sci. USA, 105, 13580, 10.1073/pnas.0804437105
Kaplan, 2015, The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol., 12, 720, 10.1038/nrgastro.2015.150
Killenberg, 1978, Measurement and subcellular distribution of choloyl-CoA synthetase and bile acid-CoA:amino acid N-acyltransferase activities in rat liver, J. Lipid Res., 19, 24, 10.1016/S0022-2275(20)41573-1
Kishinaka, 1994, High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase, Steroids, 59, 485, 10.1016/0039-128X(94)90062-0
Kitahara, 2000, Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7α-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces, Int. J. Syst. Evol. Microbiol., 50, 971, 10.1099/00207713-50-3-971
Kitahara, 2001, Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity, Int. J. Syst. Evol. Microbiol., 51, 39, 10.1099/00207713-51-1-39
Kühn, 2020, Prediagnostic plasma bile acid levels and colon cancer risk: A prospective study, J. Natl. Cancer Inst., 112, 516, 10.1093/jnci/djz166
Kumar, 2018, Human T cell development, localization, and function throughout life, Immunity, 48, 202, 10.1016/j.immuni.2018.01.007
Lavelle, 2020, Gut microbiota-derived metabolites as key actors in inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol., 17, 223, 10.1038/s41575-019-0258-z
Lee, 2021, Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease, Cell Host Microbe, 29, 1294, 10.1016/j.chom.2021.06.019
Li, 2013, Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity, Nat. Commun., 4, 2384, 10.1038/ncomms3384
Li, 2021, A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1, Cell Host Microbe, 29, 1366, 10.1016/j.chom.2021.07.013
Liu, 2018, Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis, Food Funct., 9, 5588, 10.1039/C8FO01143E
Lloyd-Price, 2019, Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases, Nature, 569, 655, 10.1038/s41586-019-1237-9
Lorenzo-Zúñiga, 2003, Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats, Hepatology, 37, 551, 10.1053/jhep.2003.50116
Macdonald, 1976, 3α-, 7α- and 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens., Biochim. Biophys. Acta, Lipids Lipid Metab., 450, 142, 10.1016/0005-2760(76)90086-2
MacDonald, 1979, Bile salt 3 α- and 12 α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms, Appl. Environ. Microbiol., 37, 992, 10.1128/aem.37.5.992-1000.1979
Martinez-Augustin, 2008, Intestinal bile acid physiology and pathophysiology, World J. Gastroenterol., 14, 5630, 10.3748/wjg.14.5630
Molodecky, 2012, Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review, Gastroenterology, 142, 46, 10.1053/j.gastro.2011.10.001
Mulder, 2014, A tale of two diseases: the history of inflammatory bowel disease, J. Crohn’s Colitis, 8, 341, 10.1016/j.crohns.2013.09.009
Murray, 2011, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol., 11, 723, 10.1038/nri3073
Nusse, 2017, Wnt/β-catenin signaling, disease, and emerging therapeutic modalities, Cell, 169, 985, 10.1016/j.cell.2017.05.016
O’Keefe, 2016, Diet, microorganisms and their metabolites, and colon cancer, Nat. Rev. Gastroenterol. Hepatol., 13, 691, 10.1038/nrgastro.2016.165
Parasar, 2019, Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity, ACS Cent. Sci., 5, 867, 10.1021/acscentsci.9b00147
Patel, 2010, Probiotic bile salt hydrolase: current developments and perspectives, Appl. Biochem. Biotechnol., 162, 166, 10.1007/s12010-009-8738-1
Pearson, 2019, Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development, Cancer Med., 8, 617, 10.1002/cam4.1965
Quinn, 2020, Global chemical effects of the microbiome include new bile-acid conjugations, Nature, 579, 123, 10.1038/s41586-020-2047-9
Ridlon, 2006, Bile salt biotransformations by human intestinal bacteria, J. Lipid Res., 47, 241, 10.1194/jlr.R500013-JLR200
Ridlon, 2016, Consequences of bile salt biotransformations by intestinal bacteria, Gut Microbes, 7, 22, 10.1080/19490976.2015.1127483
Rooks, 2016, Gut microbiota, metabolites and host immunity, Nat. Rev. Immunol., 16, 341, 10.1038/nri.2016.42
Saito, 2016, Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers, Nat. Med., 22, 679, 10.1038/nm.4086
Sato, 2021, Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians, Nature, 599, 458, 10.1038/s41586-021-03832-5
Sayin, 2013, Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist, Cell Metab., 17, 225, 10.1016/j.cmet.2013.01.003
Schirmer, 2019, Microbial genes and pathways in inflammatory bowel disease, Nat. Rev. Microbiol., 17, 497, 10.1038/s41579-019-0213-6
Schmitt, 2021, The inflammatory pathogenesis of colorectal cancer, Nat. Rev. Immunol., 21, 653, 10.1038/s41577-021-00534-x
Schroeder, 2016, Signals from the gut microbiota to distant organs in physiology and disease, Nat. Med., 22, 1079, 10.1038/nm.4185
Sefik, 2015, MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells, Science, 349, 993, 10.1126/science.aaa9420
Siegel, 2020, Colorectal cancer statistics, 2020, CA Cancer J. Clin., 70, 145, 10.3322/caac.21601
Sinha, 2020, Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation, Cell Host Microbe, 27, 659, 10.1016/j.chom.2020.01.021
Smith, 2014, Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system, PLoS ONE, 9, e85344, 10.1371/journal.pone.0085344
Song, 2019, Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome, Microbiome, 7, 9, 10.1186/s40168-019-0628-3
Song, 2020, Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis, Nature, 577, 410, 10.1038/s41586-019-1865-0
Sorrentino, 2020, Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration, Gastroenterology, 159, 956, 10.1053/j.gastro.2020.05.067
Stellwag, 1976, Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis, Biochim. Biophys. Acta, 452, 165, 10.1016/0005-2744(76)90068-1
Sun, 2021, The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer, Nat. Rev. Gastroenterol. Hepatol., 18, 335, 10.1038/s41575-020-00404-2
Tanaka, 2017, Regulatory T cells in cancer immunotherapy, Cell Res., 27, 109, 10.1038/cr.2016.151
Tanaka, 2000, Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization, Appl. Environ. Microbiol., 66, 2502, 10.1128/AEM.66.6.2502-2512.2000
Tanoue, 2016, Development and maintenance of intestinal regulatory T cells, Nat. Rev. Immunol., 16, 295, 10.1038/nri.2016.36
Taranto, 2006, Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration, Res. Microbiol., 157, 720, 10.1016/j.resmic.2006.04.002
Wang, 2019, Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis, Mol. Carcinog., 58, 1155, 10.1002/mc.22999
Wang, 2020, Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation, Gut Microbes, 12, 1, 10.1080/19490976.2020.1819155
Watanabe, 2017, Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents, J. Lipid Res., 58, 1143, 10.1194/jlr.M075143
Weir, 2013, Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults, PLoS ONE, 8, e70803, 10.1371/journal.pone.0070803
Wigg, 2001, The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis, Gut, 48, 206, 10.1136/gut.48.2.206
Wijaya, 2004, Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci, J. Food Prot., 67, 2772, 10.4315/0362-028X-67.12.2772
Wirbel, 2019, Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer, Nat. Med., 25, 679, 10.1038/s41591-019-0406-6
Xu, 2021, Deoxycholic acid-induced gut dysbiosis disrupts bile acid Enterohepatic circulation and promotes intestinal Inflammation, Dig. Dis. Sci., 66, 568, 10.1007/s10620-020-06208-3
Xu, 2021, Modulation of the gut microbiota-farnesoid X receptor axis improves deoxycholic acid-induced intestinal inflammation in mice, J. Crohn’s Colitis, 15, 1197, 10.1093/ecco-jcc/jjab003
Yachida, 2019, Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer, Nat. Med., 25, 968, 10.1038/s41591-019-0458-7
Yao, 2018, A selective gut bacterial bile salt hydrolase alters host metabolism, eLife, 7, e37182, 10.7554/eLife.37182
Zhang, 2021, Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis, Cell Death Discov., 7, 207, 10.1038/s41420-021-00589-8