Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation

Elsevier BV - Tập 176 - Trang 210-217 - 2015
Guodong Fang1, Changyin Zhu1,2, Dionysios D. Dionysiou3, Juan Gao1, Dongmei Zhou1
1Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
2School of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
3Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad, 2012, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118, 536, 10.1016/j.biortech.2012.05.042

Ahmad, 2013, Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures, Bioresour. Technol., 143, 615, 10.1016/j.biortech.2013.06.033

Cabelli, 1989, The interaction between Cu(I) superoxide-dismutase and hydrogen peroxide, J. Biol. Chem., 264, 9967, 10.1016/S0021-9258(18)81754-9

Chen, 2009, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76, 127, 10.1016/j.chemosphere.2009.02.004

Cao, 2009, Dairy-manure derived biochar effectively sorbs lead and atrazine, Environ. Sci. Technol., 43, 3285, 10.1021/es803092k

Chen, 2012, Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures, Environ. Sci. Technol., 46, 12476, 10.1021/es303351e

Dela Cruz, 2012, Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals, Environ. Sci. Technol., 46, 5971, 10.1021/es300362k

Dellinger, 2007, Formation and stabilization of persistent free radicals, Proc. Combust. Inst., 31, 521, 10.1016/j.proci.2006.07.172

Devi, 2014, Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals, Bioresour. Technol., 162, 308, 10.1016/j.biortech.2014.03.093

Dong, 2014, Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar, J. Hazard. Mater., 267, 62, 10.1016/j.jhazmat.2013.12.027

Fang, 2013, Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs, Environ. Sci. Technol., 47, 4605, 10.1021/es400262n

Fang, 2014, Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation, Environ. Sci. Technol., 48, 1902, 10.1021/es4048126

Jia, 2013, Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar, Bioresour. Technol., 136, 87, 10.1016/j.biortech.2013.02.098

Jiang, 2012, Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol, J. Hazard. Mater., 229, 145, 10.1016/j.jhazmat.2012.05.086

Keenan, 2008, Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol., 42, 6936, 10.1021/es801438f

Klüpfel, 2014, Redox properties of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 48, 5601, 10.1021/es500906d

Lehmann, 2007, A handful of carbon, Nature, 447, 143, 10.1038/447143a

Lehmann, 2006, Biochar sequestration in terrestrial ecosystems – a review, Mitigation Adapt. Strateg. Global Change, 11, 403, 10.1007/s11027-005-9006-5

Liang, 2006, Black carbon increases cation exchange capacity in soils, Soil Sci. Soc. Am. J., 30, 1719, 10.2136/sssaj2005.0383

Liu, 2011, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Technol., 102, 8247, 10.1016/j.biortech.2011.06.014

Lomnicki, 2008, Copper oxide-based model of persistent free radical formation on combustion derived particulate matter, Environ. Sci. Technol., 42, 4982, 10.1021/es071708h

Manyà, 2012, Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs, Environ. Sci. Technol., 46, 7939, 10.1021/es301029g

Mohan, 2014, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review, Bioresour. Technol., 160, 191, 10.1016/j.biortech.2014.01.120

Paciolla, 2001

Smith, 2004, Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems, Environ. Sci. Technol., 2004, 5465, 10.1021/es0352754

Spokas, 2012, Biochar’s role as an alternative N-fertilizer: ammonia capture, Plant Soil, 350, 35, 10.1007/s11104-011-0930-8

Van Zwieten, 2010, Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility, Plant Soil, 327, 235, 10.1007/s11104-009-0050-x

Vejerano, 2012, Formation and stabilization of combustion-generated environmentally persistent radicals on Ni(II)O supported on a silica surface, Environ. Sci. Technol., 46, 9406, 10.1021/es301136d

Wang, 2013, Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size, Environ. Sci. Technol., 47, 821, 10.1021/es303794d

Wang, 2013, Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations, Environ. Pollut., 172, 86, 10.1016/j.envpol.2012.08.007

Xu, 2007, Photochemical degradation of diethyl phthalate with UV/H2O2, J. Hazard. Mater., B139, 132, 10.1016/j.jhazmat.2006.06.026

Yang, 2014, Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently, Bioresour. Technol., 171, 227, 10.1016/j.biortech.2014.08.015

Yao, 2013, Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer, Environ. Sci. Technol., 47, 8700, 10.1021/es4012977

Zhou, 2006, Superoxide anion radical generation in the NaOH/H2O2/Fe(III) system: a spin trapping ESR study, Magn. Reson. Chem., 44, 38, 10.1002/mrc.1730

Zhu, 1998, New modes of action of desferrioxamine: scavenging of semiquinone radicals and stimulation of hydrolysis of tetrachlorohydroquinone, Free Radic. Biol. Med., 24, 360, 10.1016/S0891-5849(97)00220-7