Novel classifiers for intelligent disease diagnosis with multi-objective parameter evolution

Computers & Electrical Engineering - Tập 67 - Trang 483-496 - 2018
Nalluri MadhuSudana Rao1, Krithivasan Kannan1, Xiao-zhi Gao2, Diptendu Sinha Roy3
1SASTRA Deemed to be University, Thanjavur, Tamilnadu, India
2Lappeenranta University of Technology, Finland
3National Institute of Technology, Meghalaya, India

Tài liệu tham khảo

Yoo, 2012, Data mining in healthcare and biomedicine: a survey of the literature, J Med Syst, 36, 2431, 10.1007/s10916-011-9710-5 Fayyad, 1996, From data mining to knowledge discovery in databases, AI Mag, 17, 37 Bashir, 2016, IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework, J Biomed Inf, 59, 185, 10.1016/j.jbi.2015.12.001 Platt, J. (1999). Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods – Support Vector Learning (pp. 185–208). AJ, MIT Press, Cambridge, MA https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf. Gil, 2012, Predicting seminal quality with artificial intelligence methods, Expert Syst Appl, 39, 12564, 10.1016/j.eswa.2012.05.028 Mangat, 2014, Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery, Expert Syst Appl, 41, 8234, 10.1016/j.eswa.2014.06.046 Mohapatra, 2016, Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system, Swarm Evol Comput, 28, 144, 10.1016/j.swevo.2016.02.002 Shen, 2016, Evolving support vector machines using fruit fly optimization for medical data classification, Knowledge-Based Syst, 96, 61, 10.1016/j.knosys.2016.01.002 Bashir, 2016, HMV: a medical decision support framework using multi-layer classifiers for disease prediction, J Comput Sci, 13, 10, 10.1016/j.jocs.2016.01.001 Kabir, 2017, New multiple seeds based genetic algorithm for discovering a set of interesting Boolean association rules, Expert Syst Appl, 74, 55, 10.1016/j.eswa.2017.01.001 Karci, 2004, Novelty in the generation of initial population for genetic algorithms, 268 Wang, 2014, Chaotic krill herd algorithm, Inf Sci, 274, 17, 10.1016/j.ins.2014.02.123 Wang, 2016, A new metaheuristic optimisation algorithm motivated by elephant herding behaviour, Int J Bio-Inspired Comput, 8, 394, 10.1504/IJBIC.2016.081335 Fawcett, 2006, An introduction to ROC analysis, Pattern Recognit Lett, 27, 861, 10.1016/j.patrec.2005.10.010 Zhang, 2007, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans Evol Comput, 11, 712, 10.1109/TEVC.2007.892759 Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, 6, 182, 10.1109/4235.996017 Cortes, 1995, Support-vector networks, Mach Learn, 20, 273, 10.1007/BF00994018 Ferris, 2002, Interior-point methods for massive support vector machines, SIAM J Optim, 13, 783, 10.1137/S1052623400374379 http://sci2s.ugr.es/keel/datasets.php. http://archive.ics.uci.edu/ml/index.php. eric.univ-lyon2.fr/~ricco/tanagra/fichiers/heart_disease_male.xls. Bashir, 2015, BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting, Australas Phys Eng Sci Med, 38, 305, 10.1007/s13246-015-0337-6 Farid, 2016, An adaptive rule-based classifier for mining big biological data, Expert Syst Appl, 64, 305, 10.1016/j.eswa.2016.08.008 Yu, 2015, Hybrid adaptive classifier ensemble, IEEE Trans Cybern, 45, 177, 10.1109/TCYB.2014.2322195 Nalluri, 2017, Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization, J Healthcare Eng, 2017, 1, 10.1155/2017/5907264 Greenland, 2016, Statistical tests, P, Eur J Epidemiol, 31, 337, 10.1007/s10654-016-0149-3 Deb, 2001, 16 David A. Van Veldhuizen, Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. No. AFIT/DS/ENG/99-01. Air Force Inst of Tech, Wright-Patterson AFB OH School of Engineering, 1999. Schott, Jason R. Fault tolerant design using single and multicriteria genetic algorithm optimization. No. AFIT/CI/CIA-95-039. Air Force Inst of Tech Wright-Patterson AFB OH, 1995. E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral Dissertation ETH 13398, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland ,1999, 1--134.