A meshless method for two-dimensional diffusion equation with an integral condition

Engineering Analysis with Boundary Elements - Tập 34 - Trang 1031-1037 - 2010
S. Abbasbandy1, A. Shirzadi1
1Department of Mathematics, Imam Khomeini International University, Ghazvin, 34149, Iran

Tài liệu tham khảo

Lucy, 1977, A numerical approach to the testing of fusion process, Astron J, 88, 1013, 10.1086/112164 Nayroles, 1992, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput Mech, 10, 307, 10.1007/BF00364252 Melenk, 1996, The partition of unity finite element method: basic theory and applications, Comput Methods Appl Mech Eng, 139, 289, 10.1016/S0045-7825(96)01087-0 Duarte, 1996, An h-p adaptative method using clouds, Comput Methods Appl Mech Eng, 139, 237, 10.1016/S0045-7825(96)01085-7 Belytschko, 1994, Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229, 10.1002/nme.1620370205 Liu, 1995, Reproducing kernel particle methods, Int J Numer Methods Fluids, 21, 1081, 10.1002/fld.1650200824 Kansa, 1990, Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—II, J Comput Math Appl, 19, 147, 10.1016/0898-1221(90)90271-K Dehghan, 2009, A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions, Numer Algo, 52, 461, 10.1007/s11075-009-9293-0 Mukherjee, 1997, The boundary node method for potential problems, Int J Numer Methods Eng, 40, 797, 10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-# Zhu, 1998, A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput Mech, 21, 223, 10.1007/s004660050297 Sladek, 2000, Local boundary integral equation (LBIE) method for solving problem of elasticity with nonhomogeneous material properties, Comput Mech, 24, 456, 10.1007/s004660050005 Dehghan, 2008, Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method, Int J Numer Methods Eng, 76, 501, 10.1002/nme.2338 Mirzaei, 2009, Implementation of meshless LBIE method to the 2D non-linear SG problem, Int J Numer Methods Eng, 79, 1662, 10.1002/nme.2635 Atluri, 2004 Atluri, 2002 Dehghan, 2009, Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl Numer Math, 59, 1043, 10.1016/j.apnum.2008.05.001 Dehghan, 2008, The meshless local Petrov–Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation, Eng Anal Bound Elem, 32, 747, 10.1016/j.enganabound.2007.11.005 Dehghan, 2009, Meshless local boundary integral equation LBIE method for the unsteady magnetohydrodynamic MHD flow in rectangular and circular pipes, Comput Phys Commun, 180, 1458, 10.1016/j.cpc.2009.03.007 Liu, 2003 Nguyen, 2008, Meshless methods: a review and computer implementation aspects, Math Comput Simul, 79, 763, 10.1016/j.matcom.2008.01.003 Atluri, 1998, A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117, 10.1007/s004660050346 Atluri, 1998, A new meshless local Petrov–Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Comput Modeling Simul Eng, 3, 187 Atluri, 2002, The meshless local Petrov–Galerkin (MLPG) method: a simple and less costly alternative to the finite element and boundary element methods, Comput Modeling Eng Sci, 3, 11 Mazzia, 2007, A comparison of numerical integration rules for the meshless local Petrov–Galerkin method, Numer Algo, 45, 61, 10.1007/s11075-007-9110-6 Mazzia, 2010, Product Gauss quadrature rules vs. cubature rules in the meshless local Petrov–Galerkin method, J Complexity, 26, 82, 10.1016/j.jco.2009.07.002 Sladek, 2005, Stress analysis in anisotropic functionally graded materials by the MLPG method, Eng Anal Bound Elem, 29, 597, 10.1016/j.enganabound.2005.01.011 Sladek, 2006, Inverse heat conduction problems by meshless local Petrov–Galerkin method, Eng Anal Bound Elem, 30, 650, 10.1016/j.enganabound.2006.03.003 Vavourakis, 2008, A MLPG(LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems, Commun Numer Methods Eng, 24, 281, 10.1002/cnm.965 Atluri, 2000, New concepts in meshless methods, Int J Numer Methods Eng, 47, 537, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<537::AID-NME783>3.0.CO;2-E Sladek, 2006, Analysis of orthotropic thick plates by meshless local Petrov–Galerkin (MLPG) method, Int J Numer Methods Eng, 67, 1830, 10.1002/nme.1683 Batra, 2009, Analysis of adiabatic shear bands in heat-conducting lastothermoviscoplastic materials by the meshless local Bubnov–Galerkin method, Commun Numer Methods Eng, 25, 1019, 10.1002/cnm.1139 Alves, 2003, A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function, Int J Numer Methods Eng, 57, 1523, 10.1002/nme.730 Cannon, 1986, Diffusion subject to specification of mass, J Math Anal Appl, 115, 517, 10.1016/0022-247X(86)90012-0 Cannon, 1990, An inverse problem of finding a parameter in a semi-linear heat equation, J Math Anal Appl, 145, 470, 10.1016/0022-247X(90)90414-B Cannon, 1993, The solution of the diffusion equation in two-space variables subject to the specification of mass, Appl Anal J, 50, 1, 10.1080/00036819308840181 Friedman, 1986, Monotonic decay of solutions of parabolic equation with nonlocal boundary conditions, Q Appl Math, XLIX, 468 Kawohl, 1987, Remark on a paper by D.A. Day on a maximum principle under nonlocal boundary conditions, Q Appl Math, XLIV, 751, 10.1090/qam/872825 Wang, 1990, The numerical method for the conduction subject to moving boundary energy specification, Numer Heat Transfer, 130, 35 Wang, 1990, A numerical method for the diffusion equation with nonlocal boundary specifications, Int J Eng Sci, 28, 543, 10.1016/0020-7225(90)90056-O Wang, 1989, A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations, Inverse Problems, 5, 631, 10.1088/0266-5611/5/4/013 Day, 1982, Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories, Q Appl Math, 40, 319, 10.1090/qam/678203 Day, 1983, A decreasing property of solutions of a parabolic equation with applications to thermoelasticity and other theories, Q Appl Math, XLIV, 468, 10.1090/qam/693879 Capsso, 1988, A reaction-diffusion system arising in modeling man-environment diseases, Q Appl Math, 46, 431, 10.1090/qam/963580 Cannon, 1987, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM J Numer Anal, 24, 499, 10.1137/0724036 Fairweather, 1991, The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J Sci Statist Comput, 12, 127, 10.1137/0912007 Dehghan, 2002, A new AD1 technique for two-dimensional parabolic equation with an integral condition, Comput Math Appl, 43, 1477, 10.1016/S0898-1221(02)00113-X Dehghan, 2002, Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition, Nonlinear Anal, 48, 637, 10.1016/S0362-546X(00)00172-3 Hashim, 2006, Comparing numerical methods for the solutions of two-dimensional diffusion with an integral condition, Appl Math Comput, 181, 880, 10.1016/j.amc.2006.02.013 Dehghan, 2010, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Eng Anal Bound Elem, 34, 324, 10.1016/j.enganabound.2009.10.010