High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors

Solid State Ionics - Tập 336 - Trang 80-86 - 2019
Mahdi Kazazi1
1Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

Tài liệu tham khảo

Yu, 2013, Iron Hexacyanoferrate nanoparticles as cathode materials for Lithium and sodium rechargeable batteries, ECS Electrochem. Lett., 2, A39, 10.1149/2.008304eel Shokouhimehr, 2013, Metal Hexacyanoferrate nanoparticles as electrode materials for lithium ion batteries, Nanosci. Nanotechnol. Lett., 5, 770, 10.1166/nnl.2013.1616 Yu, 2014, Facile synthesis of nanostructured carbon nanotube/iron oxide hybrids for lithium-ion battery anodes, RSC Adv., 4, 37365, 10.1039/C4RA05945J Zafar, 2017, Cathode materials for rechargeable aluminum batteries: current status and progress, J. Mater. Chem. A, 5, 5646, 10.1039/C7TA00282C Yu, 2014, Two-dimensional assemblies of ultrathin titanate nanosheets for lithium ion battery anodes, RSC Adv., 4, 12087, 10.1039/c4ra00624k Chen, 2017, Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid state supercapacitors, Chem. Eng. J., 327, 1198, 10.1016/j.cej.2017.06.098 Hu, 2016, Three-dimensional Co3O4@NiO hierarchical nanowire arrays for solidstate symmetric supercapacitor with enhanced electrochemical performances, Chem. Eng. J., 304, 223, 10.1016/j.cej.2016.06.097 Gupta, 2008, Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors, J. Power Sources, 175, 680, 10.1016/j.jpowsour.2007.09.004 Lam, 2006, Development of ultra-battery for hybrid-electric vehicle applications, J. Power Sources, 158, 1140, 10.1016/j.jpowsour.2006.03.022 Zhang, 2010, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392, 10.1021/cm902876u Frackowiak, 2000, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77, 2421, 10.1063/1.1290146 Kim, 2003, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Appl. Phys. Lett., 83, 1216, 10.1063/1.1599963 Ghotbi, 2016, Design of a layered nanoreactor to produce nitrogen doped carbon nanosheets as highly efficient material for supercapacitors, Mater. Des., 89, 708, 10.1016/j.matdes.2015.10.015 Cottineau, 2006, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A Mater. Sci. Process., 82, 599, 10.1007/s00339-005-3401-3 Yuan, 2014, Mixed transition-metal oxides: design, synthesis, and energy-related applications, Angew. Chem. In. Ed., 53, 1488, 10.1002/anie.201303971 Mazinani, 2019, The combustion synthesis of Ag-doped MnCo2O4 nanoparticles for supercapacitor applications, JOM, 10.1007/s11837-019-03387-x Dubal, 2012, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor, J. Mater. Chem., 22, 3044, 10.1039/c2jm14470k Wang, 2014, Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance, J. Mater. Chem., 2, 19726, 10.1039/C4TA04924A Kazazi, 2017, Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for high-performance pseudocapacitors, Curr. Appl. Phys., 17, 240, 10.1016/j.cap.2016.11.028 Kazazi, 2017, Hydrothermal synthesis and electrochemical characterization of mesoporous NixCo3-xO4 (0≤ x≤ 1) nanorods as electrode materials for high-performance electrochemical capacitors, Solid State Ionics, 308, 8, 10.1016/j.ssi.2017.05.012 Kazazi, 2018, Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes, Appl. Surf. Sci., 441, 251, 10.1016/j.apsusc.2018.02.054 Chen, 2015, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole, J. Power Sources, 287, 68, 10.1016/j.jpowsour.2015.04.026 Pourbeyram, 2018, Graphene/polypyrrole nanofiber prepared by simple one step green method for electrochemical supercapacitors, Synth. Met., 238, 22, 10.1016/j.synthmet.2018.02.002 Chen, 2017, Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode, Electrochim. Acta, 232, 72, 10.1016/j.electacta.2017.02.133 Liu, 2017, Facile synthesis of three-dimensional (3D) interconnecting polypyrrole (PPy) nanowires/nanofibrous textile composite electrode for high performance supercapacitors, Composites Part A, 101, 30, 10.1016/j.compositesa.2017.05.033 Fang, 2017, Constructing polypyrrole/aligned carbon nanotubes composite materials as electrodes for high-performance supercapacitors, Mater. Lett., 190, 232, 10.1016/j.matlet.2016.12.110 Chen, 2013, Influence of dopants and carbon nanotubes on polypyrrole electropolymerization and capacitive behavior, Mater. Lett., 98, 67, 10.1016/j.matlet.2013.01.123 Liu, 2010, Electrochemical deposition of polypyrrole/sulfonated graphene composite films, J. Phys. Chem. C, 114, 22783, 10.1021/jp108826e Weng, 2013, Polypyrrole/carbon supercapacitor electrode with remarkably enhanced high-temperature cycling stability by TiC nanoparticle inclusion, Electrochem. Commun., 27, 172, 10.1016/j.elecom.2012.11.025 Kazazi, 2018, Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode, Ceram. Int., 44, 10863, 10.1016/j.ceramint.2018.03.138 Hakamada, 2016, Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors, J. Power Sources, 325, 670, 10.1016/j.jpowsour.2016.06.091 Yuan, 2012, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors, Adv. Funct. Mater., 22, 4592, 10.1002/adfm.201200994 Kazazi, 2014, Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: a kinetic study by electrochemical impedance spectroscopy, Ionics, 20, 635, 10.1007/s11581-013-1044-5 Kundu, 2015, Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors, Mater. Lett., 144, 114, 10.1016/j.matlet.2015.01.032 Ye, 2017, Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors, J. Power Sources, 351, 51, 10.1016/j.jpowsour.2017.03.104 Chen, 2017, Electrodeposition of polypyrrole/functionalized-multiwalled carbon nanotubes composite and its application in supercapacitors, Electrochim. Acta, 258, 43, 10.1016/j.electacta.2017.10.100 Raj, 2015, Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film, ACS Appl. Mater. Interfaces, 7, 13405, 10.1021/acsami.5b02070 Yang, 2016, Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density, J. Power Sources, 302, 39, 10.1016/j.jpowsour.2015.10.035 Sahoo, 2012, Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes, Express Polym Lett, 6, 965, 10.3144/expresspolymlett.2012.102 Kim, 2013, Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor, Electrochim. Acta, 109, 370, 10.1016/j.electacta.2013.07.119 E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources 153 (2006) 413–418. Chen, 2015, Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole, J. Power Sources, 287, 68, 10.1016/j.jpowsour.2015.04.026 Wang, 2007, Effect of doping ions on electrochemical capacitance properties of polypyrrole films, Acta Phys. -Chim. Sin., 23, 299, 10.1016/S1872-1508(07)60023-0 Noh, 2003, Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder, J. Power Sources, 124, 593, 10.1016/S0378-7753(03)00813-9 Xin, 2017, Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor, Appl. Surf. Sci., 414, 218, 10.1016/j.apsusc.2017.04.109 de Oliveira, 2014, Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes, J. Power Sources, 268, 45, 10.1016/j.jpowsour.2014.06.027 Zhu, 2014, Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance, J. Power Sources, 268, 233, 10.1016/j.jpowsour.2014.06.046