Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
Tài liệu tham khảo
Conway, 1999
Kötz, 2000, Principles and applications of electrochemical capacitors, Electrochim Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6
Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4
Qu, 1998, Studies of activated carbons used in double layer capacitors, J Power Sources, 74, 99, 10.1016/S0378-7753(98)00038-X
Kierzek, 2004, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim Acta, 49, 515, 10.1016/j.electacta.2003.08.026
Lozano-Castelló, 2003, Influence of pore structure and surface chemistry on electric double layer capacitance in non aqueous electrolyte, Carbon, 41, 1765, 10.1016/S0008-6223(03)00141-6
Shi, 1996, Activated carbons and double layer capacitance, Electrochim Acta, 41, 1633, 10.1016/0013-4686(95)00416-5
Guo, 2003, Performance of electrical double layer capacitors with porous carbons derived from rice husk, Mat Chem Phys, 80, 704, 10.1016/S0254-0584(03)00105-6
Shiraishi, 2001, Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene, Electrochem Solid-State Lett, 4, A5, 10.1149/1.1344276
Kim, 2004, Structural features necessary to obtain a high specific capacitance in electric double layer capacitors, Carbon, 42, 2423, 10.1016/j.carbon.2004.04.039
Bleda-Martinez, 2005, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 43, 2677, 10.1016/j.carbon.2005.05.027
Salitra, 2000, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J Electrochem Soc, 147, 2486, 10.1149/1.1393557
Eliad, 2001, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions, J Phys Chem B, 105, 6880, 10.1021/jp010086y
Eliad, 2002, Proton selective environment in the pores of activated molecular sieving carbon electrodes, J Phys Chem B, 106, 10128, 10.1021/jp020336q
Morimoto, 1996, Electric double-layer capacitor using organic electrolyte, J Power Sourc, 60, 239, 10.1016/S0378-7753(96)80017-6
Momma, 1996, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J Power Sourc, 60, 249, 10.1016/S0378-7753(96)80018-8
Hsieh, 2002, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667, 10.1016/S0008-6223(01)00182-8
Cheng, 2003, Electrochemical responses from surface oxides present on HNO3-treated carbons, Carbon, 41, 2057, 10.1016/S0008-6223(03)00212-4
Suematsu, 2001, Quinone-introduced oligomeric supramolecule for supercapacitor, J Power Sourc, 97–98, 816, 10.1016/S0378-7753(01)00735-2
Frackowiak, 2006, Optimization of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochim Acta, 51, 2209, 10.1016/j.electacta.2005.04.080
Stoeckli, 1999, The development of micropore volumes and widths during physical activation of various precursors, Carbon, 37, 2075, 10.1016/S0008-6223(99)00220-1
Rouzaud, 1989, 55
Marsh, 1984, Formation of active carbons from cokes using potassium hydroxide, Carbon, 22, 603, 10.1016/0008-6223(84)90096-4
Vix-Guterl, 2005, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293, 10.1016/j.carbon.2004.12.028
Khomenko, 2005, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, J Power Sourc, 153, 183, 10.1016/j.jpowsour.2005.03.210