Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes

Carbon - Tập 44 - Trang 2498-2507 - 2006
E. Raymundo-Piñero1, K. Kierzek2, J. Machnikowski2, F. Béguin1
1Centre de Recherche sur la Matière Divisée, CNRS—University of Orléans, 1B rue de la Férollerie, 45071 Orléans Cedex02, France
2Faculty of Chemistry, Wrocław University of Technology, Gdańska 7/9, 50-344 Wrocław, Poland

Tài liệu tham khảo

Conway, 1999 Kötz, 2000, Principles and applications of electrochemical capacitors, Electrochim Acta, 45, 2483, 10.1016/S0013-4686(00)00354-6 Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4 Qu, 1998, Studies of activated carbons used in double layer capacitors, J Power Sources, 74, 99, 10.1016/S0378-7753(98)00038-X Kierzek, 2004, Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim Acta, 49, 515, 10.1016/j.electacta.2003.08.026 Lozano-Castelló, 2003, Influence of pore structure and surface chemistry on electric double layer capacitance in non aqueous electrolyte, Carbon, 41, 1765, 10.1016/S0008-6223(03)00141-6 Shi, 1996, Activated carbons and double layer capacitance, Electrochim Acta, 41, 1633, 10.1016/0013-4686(95)00416-5 Guo, 2003, Performance of electrical double layer capacitors with porous carbons derived from rice husk, Mat Chem Phys, 80, 704, 10.1016/S0254-0584(03)00105-6 Shiraishi, 2001, Electric double layer capacitance of highly porous carbon derived from lithium metal and polytetrafluoroethylene, Electrochem Solid-State Lett, 4, A5, 10.1149/1.1344276 Kim, 2004, Structural features necessary to obtain a high specific capacitance in electric double layer capacitors, Carbon, 42, 2423, 10.1016/j.carbon.2004.04.039 Bleda-Martinez, 2005, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 43, 2677, 10.1016/j.carbon.2005.05.027 Salitra, 2000, Carbon electrodes for double-layer capacitance. I. Relations between ion and pore dimensions, J Electrochem Soc, 147, 2486, 10.1149/1.1393557 Eliad, 2001, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions, J Phys Chem B, 105, 6880, 10.1021/jp010086y Eliad, 2002, Proton selective environment in the pores of activated molecular sieving carbon electrodes, J Phys Chem B, 106, 10128, 10.1021/jp020336q Morimoto, 1996, Electric double-layer capacitor using organic electrolyte, J Power Sourc, 60, 239, 10.1016/S0378-7753(96)80017-6 Momma, 1996, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J Power Sourc, 60, 249, 10.1016/S0378-7753(96)80018-8 Hsieh, 2002, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667, 10.1016/S0008-6223(01)00182-8 Cheng, 2003, Electrochemical responses from surface oxides present on HNO3-treated carbons, Carbon, 41, 2057, 10.1016/S0008-6223(03)00212-4 Suematsu, 2001, Quinone-introduced oligomeric supramolecule for supercapacitor, J Power Sourc, 97–98, 816, 10.1016/S0378-7753(01)00735-2 Frackowiak, 2006, Optimization of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochim Acta, 51, 2209, 10.1016/j.electacta.2005.04.080 Stoeckli, 1999, The development of micropore volumes and widths during physical activation of various precursors, Carbon, 37, 2075, 10.1016/S0008-6223(99)00220-1 Rouzaud, 1989, 55 Marsh, 1984, Formation of active carbons from cokes using potassium hydroxide, Carbon, 22, 603, 10.1016/0008-6223(84)90096-4 Vix-Guterl, 2005, Electrochemical energy storage in ordered porous carbon materials, Carbon, 43, 1293, 10.1016/j.carbon.2004.12.028 Khomenko, 2005, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, J Power Sourc, 153, 183, 10.1016/j.jpowsour.2005.03.210