An extension theorem from connected sets, and homogenization in general periodic domains

E. Acerbi1, V. ChiadòPiat1, G. Dal Maso2, D. Percivale1
1Dipartimento di Matematica del Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy
2S.I.S.S.A., Via Beirut 4, I-34014 Trieste, Italy

Tài liệu tham khảo

Acerbi, 1988, Homogenization of noncoercive functionals: periodic materials with soft inclusions, Appl. Math. Optim., 17, 91, 10.1007/BF01448361 Adams, 1975 Allaire, 1989, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis, 2, 203, 10.3233/ASY-1989-2302 Attouch, 1984 Braides, 1983, Omogeneizzazione di integrali non coercivi, Ricerche Mat., 32, 347 Cioranescu D. & Donato P., Homogénéisation du problème de Neumann non homogène dans ouverts perforés, Asymptotic Analysis (to appear). Cioranescu, 1979, Homogenization in open sets with holes, J. math. Analysis Applic., 71, 590, 10.1016/0022-247X(79)90211-7 Cioranescu, 1988, Elastic behaviour of very thin cellular structures Cioranescu, 1989, Structures très minces en élasticité linéarizée: tours et grillages, C. r. Acad. Sci. Paris, 308, 41 Chiadò Piat V., Convergence of minima for non equicoercive functionals and related problems, Annali Mat. pura applic. (to appear). Conca, 1990 De Giorgi, 1979, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3, 63 Donato, 1988 Khruslov, 1979, The asymptotic behaviour of solutions of the second boundary value problem under fragmentation of the boundary of the domain, Math. USSR-Sb., 35, 266, 10.1070/SM1979v035n02ABEH001474 Mortola, 1982, On the convergence of the minimum points of non equicoercive quadratic functionals, Communs Partial Diff. Eqns, 7, 645, 10.1080/03605308208820235 Oleinik, 1989, The Neumann problem for second order elliptic equations with rapidly oscillating periodic coefficients in a perforated domain, 879 Ziemer, 1989