An extension theorem from connected sets, and homogenization in general periodic domains
Tài liệu tham khảo
Acerbi, 1988, Homogenization of noncoercive functionals: periodic materials with soft inclusions, Appl. Math. Optim., 17, 91, 10.1007/BF01448361
Adams, 1975
Allaire, 1989, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Analysis, 2, 203, 10.3233/ASY-1989-2302
Attouch, 1984
Braides, 1983, Omogeneizzazione di integrali non coercivi, Ricerche Mat., 32, 347
Cioranescu D. & Donato P., Homogénéisation du problème de Neumann non homogène dans ouverts perforés, Asymptotic Analysis (to appear).
Cioranescu, 1979, Homogenization in open sets with holes, J. math. Analysis Applic., 71, 590, 10.1016/0022-247X(79)90211-7
Cioranescu, 1988, Elastic behaviour of very thin cellular structures
Cioranescu, 1989, Structures très minces en élasticité linéarizée: tours et grillages, C. r. Acad. Sci. Paris, 308, 41
Chiadò Piat V., Convergence of minima for non equicoercive functionals and related problems, Annali Mat. pura applic. (to appear).
Conca, 1990
De Giorgi, 1979, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3, 63
Donato, 1988
Khruslov, 1979, The asymptotic behaviour of solutions of the second boundary value problem under fragmentation of the boundary of the domain, Math. USSR-Sb., 35, 266, 10.1070/SM1979v035n02ABEH001474
Mortola, 1982, On the convergence of the minimum points of non equicoercive quadratic functionals, Communs Partial Diff. Eqns, 7, 645, 10.1080/03605308208820235
Oleinik, 1989, The Neumann problem for second order elliptic equations with rapidly oscillating periodic coefficients in a perforated domain, 879
Ziemer, 1989