Ecological health and causal assessment of fish communities experiencing multiple stressors in Gap Stream, South Korea
Tóm tắt
Habitat evaluation, water chemistry, fish community data, and a chemical exposure biomarker were used to evaluate the effects of multiple stressors on fish community structure and identify the probable cause(s) of fish community degradation in the Gap Stream, South Korea during May-October 2000. Downstream of a wastewater outfall, there was a decline in the Index of Biotic Integrity of the fish community due to a decrease in the number of native species, an increase in the percentage of tolerant species, and an increase in external deformities and lesions. Five candidate causes of fish community degradation were identified including habitat alteration, chemicals including metals and polycyclic aromatic hydrocarbons (PAHs), low dissolved oxygen, and nutrient enrichment. The results of our causal analysis suggest that chemical contamination, habitat alteration, and nutrient enrichment were the principal probable causes responsible for the degradation of the fish community in the Gap Stream below the municipal wastewater treatment plant.
Tài liệu tham khảo
Adams, S. M. Assessing cause and effect of multiple stressors on marine systems.Mar Pollut Bull 51, 649–657 (2005).
Yeom, D. H. & Adams, S. M. Assessing effects of stress across levels of biological organization using an aquatic ecosystem health index.Ecotox Environ Safe 67, 286–295 (2007).
Suter II, G. W., Norton, S. B. & Cormier, S. M. A methodology for inferring the causes of observed impairments in aquatic ecosystems.Environ Toxicol Chem 21, 1101–1111 (2002).
Norton, S. B.et al. Determining probable causes of ecological impairment in the Little Scioto River, Ohio, USA: Part 1. Listing candidate causes and analyzing evidence.Environ Toxicol Chem 21, 1112–1124 (2002).
Cormier, S. M., Norton, S. B., Suter II, G. W., Altfater, D. & Counts, B. Determining the causes of impairments in the Little Scioto River, Ohio, USA: Part 2. Characterization of causes.Environ Toxicol Chem 21, 1125–1137 (2002).
Yeom, D. H., Lee, S. A., Kang, G. S., Seo, J. & Lee, S. K. Stressor identification and health assessment of fish exposed to wastewater effluents in Miho Stream, South Korea.Chemosphere 67, 2282–2292 (2007).
7. US EPA. inFish Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. EPA 600-R-92-111 (Environmental Monitoring Systems Laboratory-Cincinnati Office of Modeling, Monitoring Systems, and Quality Assurance, Office of Research Development, Cincinnati, 1993).
Oh, S. M., Ham, B. W., Kim, J. H. & Chung, K. H. Novel quantitative assessment for the toxic effect of polycyclic aromatic hydrocarbon-like compounds in a water environment using the ethoxyresorufin-O-deethylase microassay.J Health Sci 49, 59–64 (2003).
Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R. & Schlosser, I. J. in Assessing Biological Integrity in Running Water: A Method and Its Rationale. Illinois national history survey; Special Publication 5 (Champaign, 1986).
US EPA. inStressor Identification Guidance Document. EPA/ 822-B-00-025. Final Report (Washington D.C., 2000).
Hamilton, K. & Bergersen, E. P. inMethods to Estimate Aquatic Habitat Variables. Environmental Evaluation Project No. DPTS-35-9 (Bureau of Reclamation, Denver Federal Center, Denver, 1984).
Kosmala, A., Migeon, B., Flammarion, P. & Garric J. Impact assessment of a wastewater treatment plant effluent using the fish biomarker ethoxyresorufin-Odeethylase: Field and on-site experiments.Ecotox Environ Safe 41, 19–28 (1998).
Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: Inpacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems.Environ Pollut 100, 179–196 (1999).
Allan, J. D. inStream Ecology: Structure and Function of Running Waters (Chapman & Hall, London, 1995).
Rankin, E., Miltner, R., Yoder, C. & Mishne, D. inAssociation between Nutrients, Habitat, and the Aquatic Biota in Ohio Rivers and Streams (Ohio EPA Technical bulletin MAS/1999-1. Ohio EPA, Columbus, 1999).
Yoder, C. O. & Rankin, E. T. inBiological Assessment and Criteria: Tools for Water Resource Planning and Decision-making. 236–286 (Lewis Publishers, Boca Raton, 1995).
Albers, P. inHandbook of Ecotoxicology (eds Hoffman, D. J., Rattner, B. A., Burton, G. A. & Cairs, J.) 330–335 (CRC, Boca Raton, 1995).
Eisler, R. inPolycyclic Aromatic Hydrocarbons, Vol I. (Lewis, Boca Raton, 2000).
Ohio EPA.Association between Nutrients, Habitat and Aquatic Biota in Ohio Rivers and Streams. Technical Bulletin MAS/1999-1-1 (Division of Surface Water, Monitoring and Assessment Section, Columbus, 1999).
Aas, E., Beyer, J., Jonsson, G., Reichert, W. L. & Anderson O. K. Evidence of uptake, biotransformation and DNA binding of polyaromatic hydrocarbons in Atlantic cod and corkwing wrasse caught in the vicinity of an aluminium works.Mar Environ Res 52, 213–229 (2001).
Khan, R. A. Health of flatfish from localities in Placentia Bay, Newfoundland, contaminated with petroleum and PCBs.Arch Environ Contam Toxicol 44, 485–492 (2003).
Chen, C. S. Ecological risk assessment for aquatic species exposed to contaminants in Keelung River, Taiwan.Chemosphere 61, 1142–1158 (2005).
Adams, S. M. Establishing causality between environmental stressors and effects on aquatic ecosystems.Hum Ecol Risk Assess 9, 17–35 (2003).
Ohio EPA. inBiological Criteria for the Protection of Aquatic Life. Volume III. Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio Environmental Protection Agency, Division of Water Quality, Monitoring, and Assessment, Columbus, 1989).
Plafkin, J. L., Barbour, M. T., Porter, K. D. & Hughes, R. M. inRapid Assessment Protocols for Use in Streams and Rivers: Benthic Macroinvertebrates and Fish, EPA/444/4-89-001 (Washington D.C., 1989).
Sun, F., Littlejohn, D. & Gibson, M. D. Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soil by reversed-phase liquid chromatography with ultraviolet absorption detection.Anal Chem Acta 364, 1–11 (1998).
US Geological Survey (USGS). in Biomonitoring of Environmental Status and Trends (BEST) Program: Selected Methods for Monitoring Chemical Contaminants and Their Effects in Aquatic Ecosystems. USGS/ BRD/ITR-2000-0005. Information and Technology Report (Columbia, 2000).
Drenth, H. J., Bouwman, C. A., Seinen, W. & van den Berg, M. Effects of some persistent halogenated environmental contaminants on aromatase (CYP-19) activity in the human chloricarcinoma cell line JEG-3.Toxicol Appl Pharmacol 148, 50–55 (1998).
Lowry, O. H., Rosebrough, N. J., Farr, L. A. & Randall, R. J. Protein measurement with the folin phenol reagent.J Biol Chem 193, 265–275 (1951).
Hanberg, A., Strahlberg, M., Georgellies, A., de Wit, C. & Ahlborg, U. G. Swedish dioxin survey: Induction.Pharmacol Toxicol 69, 442–449 (1991).
Sokal, R. R. & Rohlf, F. J.Biometry 3th Edn (W. H. Freeman, New York, 1995).
An, K. G., Yeom, D. H. & Lee, S. K. Rapid bioassessment of Kap Stream using the Index of Biological Integrity.Korean J Environ Biol 19, 261–269 (2001).
Kim, I. S. inIllustrated Encyclopedia of Fauna and Flora of Korea. Vol. 37. Freshwater Fishes (National Textbook Company, Chochiwon, Korea, 1997).
Rankin, E. T. & Yoder, C. O. inAssessing the Sustainability and Biological Integrity of Water Resources using Fish Communities (eds Simon, T.P.) 611–624 (CRC Press, Washington D.C., 1999).
Karr, J. R. Assessment of biotic integrity using fish communitites.Fisheries 6, 21–27 (1981).