Rapid biotic molecular transformation of fulvic acids in a karst aquifer

Geochimica et Cosmochimica Acta - Tập 71 - Trang 5474-5482 - 2007
Florian Einsiedl1, Norbert Hertkorn2, Manfred Wolf1, Moritz Frommberger2, Philippe Schmitt-Kopplin2, Boris P. Koch3
1Institute of Groundwater Ecology, GSF-National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
2Institute of Ecological Chemistry, GSF-National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764, Neuherberg, Germany
3Alfred Wegener Institute for Polar and Marine Research, Ecological Chemistry, Am Handelshafen 12, D-27570 Bremerhaven, Germany

Tài liệu tham khảo

Abbt-Braun, 2002 Artinger, 2000, Characterization of groundwater humic substances: influence of sedimentary organic carbon, Appl. Geochem., 15, 97, 10.1016/S0883-2927(99)00021-9 Benner, 1987, Depletion of 13C in lignin and its implications for stable carbon isotope studies, Nature, 329, 708, 10.1038/329708a0 Bianchi, 1996, Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from the Sabine River floodplain (southeast Texas, USA), Archiv für Hydrobiologie, 136, 261, 10.1127/archiv-hydrobiol/136/1996/261 Buckau, 2000, Development of climatic and vegetation conditions and the geochemical and isotopic composition in the Franconian Albvorland aquifer system, Appl. Geochem., 15, 1191, 10.1016/S0883-2927(99)00116-X Christl, 2007, C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation, Environ. Sci. Technol., 41, 1915, 10.1021/es062141s Dittmar, 2001, Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil), Geochim. Cosmochim. Acta, 65, 1417, 10.1016/S0016-7037(00)00619-0 Einsiedl, 2005, Flow system dynamics and water storage in a fissured-porous karst aquifer, J. Hydrol., 312, 312, 10.1016/j.jhydrol.2005.03.031 Einsiedl, 2005, Estimation of denitrification potential in a karst aquifer using the 15N and 18O isotopes of nitrate, Biogeochemistry, 72, 67, 10.1007/s10533-004-0375-8 Einsiedl, 2005, Sources and processes affecting sulphate in a karstic groundwater system of the Franconian Alb, Southern Germany, Environ. Sci. Technol., 39, 7118, 10.1021/es050426j Einsiedl, 2006, Hydrodynamic and microbial processes controlling nitrate in a fissured porous aquifer, Environ. Sci. Technol., 40, 6697, 10.1021/es061129x Einsiedl, 2007, Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area, Chem. Geol., 238, 268, 10.1016/j.chemgeo.2006.11.014 Feng, 2005, Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces, Org. Geochem., 36, 1553, 10.1016/j.orggeochem.2005.06.008 Freudenthal, 2001, Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes, Geochim. Cosmochim. Acta, 65, 1795, 10.1016/S0016-7037(01)00554-3 Hansell, 2004, Degradation of terrigenous dissolved organic carbon in the Western Arctic Ocean, Science, 304, 858, 10.1126/science.1096175 Heinrichs, 1987, DOC mass balance of the Franconian Alb, GSF-JB-Inst. Hydrol., 36 Hertkorn, 2006, Characterization of a major refractory component of marine dissolved organic matter, Geochim. Cosmochim. Acta, 70, 2990, 10.1016/j.gca.2006.03.021 Hertkorn, 2002, Utilization and transformation of aquatic humic substances by autochthonous microorganisms, Environ. Sci. Technol., 36, 4334, 10.1021/es010336o Hertkorn, 2002, Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy, J. Environ. Qual., 31, 375, 10.2134/jeq2002.0375 Hertkorn, N., Ruecker, C., Meringer, M., Gugisch, R., Frommberger, M., Perdue, E. M., Witt, M. and Schmitt-Kopplin, Ph. (in press). High-precision frequency measurements: indispensable tools at the core of molecular-level analysis of complex systems. Anal. Bioanal. Chem., doi:10.1007/s00216-007-1577-4. Hughey, 2001, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra, Anal. Chem., 73, 4676, 10.1021/ac010560w Koch, 2005, The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments, Org. Geochem., 36, 273, 10.1016/j.orggeochem.2004.07.019 Koch, 2006, From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter, Rapid Commun. Mass Spectrom., 20, 926, 10.1002/rcm.2386 Krumholz, 1997, Confined subsurface microbial communities in Cretaceous rock, Nature, 386, 64, 10.1038/386064a0 Kujawinski, 2004, Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Mar. Chem.: New Approaches in Marine Organic Biogeochemistry: A Tribute to the Life and Science of John I. Hedges, 92, 23 Lee, 2005, Cu(II) adsorption at the calcite–water interface in the presence of natural organic matter: kinetic studies and molecular-scale characterization, Geochim. Cosmochim. Acta, 69, 49, 10.1016/j.gca.2004.06.015 Leenheer, 2003, Characterization and diagenesis of strong-acid carboxyl groups in humic substances, Appl. Geochem., 18, 471, 10.1016/S0883-2927(02)00100-2 Lehmann, 2002, Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis, Geochim. Cosmochim. Acta, 66, 3573, 10.1016/S0016-7037(02)00968-7 Lovley, 1999, Humics as an electron donor for anaerobic respiration, Environ. Microbiol., 1, 89, 10.1046/j.1462-2920.1999.00009.x Ogawa, 1999, Vertical distributions of dissolved organic carbon and nitrogen in the Southern Ocean, Deep Sea Res. I, Oceanogr. Res. Pap., 46, 1809, 10.1016/S0967-0637(99)00027-8 Opsahl, 1997, Distribution and cycling of terrigenous dissolved organic matter in the ocean, Nature, 386, 480, 10.1038/386480a0 Perdue, 2007, Substitution patterns in aromatic rings by increment analysis. Model development and application to natural organic matter, Anal. Chem., 79, 1010, 10.1021/ac061611y Qualls, 2004, Biodegradability of humic substances and other fractions of decomposing leaf litter, Soil Sci. Soc. Am. J., 68, 1705, 10.2136/sssaj2004.1705 Schelske, 1995, Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie, Limnol. Oceanogr., 40, 918, 10.4319/lo.1995.40.5.0918 Schmitt-Kopplin, Ph. (2005) Capillary electrophoretic techniques coupled to mass spectrometry for the characterization of NOM. In Advanced Characterization of Natural Organic Matter symposium at the Fall, August 28th–September 1st, National ACS Meeting, Washington, DC, USA. Seiler, 1989, Hydrodynamic dispersion in karstified limestones and dolomites in the Upper Jurassic of the Franconian Alb, FRG, J. Hydrol., 108, 235, 10.1016/0022-1694(89)90285-0 Thurman, 1981, Preparative isolation of aquatic humic substances, Environ. Sci. Technol., 15, 463, 10.1021/es00086a012 Visser, 1983, Application of Van Krevelen’s graphical–statistical method for the study of aquatic humic material, Environ. Sci. Technol., 7, 412, 10.1021/es00113a010 Wang, 1997, Adsorption of (poly)maleic acid and an aquatic fulvic acid by goethite, Geochim. Cosmochim. Acta, 61, 5313, 10.1016/S0016-7037(97)00338-4 Watt, 1996, Sugars and amino acids in humic substances isolated from British and Irish waters, Water Res., 30, 1502, 10.1016/0043-1354(95)00319-3 Wolf, 2005, Asymmetrical flow field-flow fractionation of humic substances: comparison of polyacrylic acids and polystyrene sulfonates as molar mass standards, 23