Updating the error term in the prime number theorem

The Ramanujan Journal - Tập 39 - Trang 225-234 - 2015
Tim Trudgian1
1Mathematical Sciences Institute, Australian National University, Canberra, Australia

Tóm tắt

An improved estimate is given for $$|\theta (x) -x|$$ , where $$\theta (x) = \sum _{p\le x} \log p$$ . Four applications are given: the first to arithmetic progressions that have points in common, the second to primes in short intervals, the third to a conjecture by Pomerance and the fourth to an inequality studied by Ramanujan.

Tài liệu tham khảo

Berndt, B.C.: Ramanujan’s Notebooks: Part IV. Springer, New York (1993) Dudek, A.W.: An Explicit Result for Primes Between Cubes (January 2014). arXiv:1401.4233v1 Dudek, A.W., Platt, D.J.: Solving a curious inequality of Ramanujan. Exp. Math. (in press). arXiv:1407.1901 Dusart, P.: Autour de la fonction qui compte le nombre de nombres premiers. PhD thesis, Université de Limoges (1998) Dusart, P.: Estimates of Some Functions Over Primes Without R.H. (2010). arXiv:1002.0442v1 Faber, L., Kadiri, H.: New bounds for \(\psi (x)\). Math. Comp. (2014). doi:10.1090/S0025-5718-2014-02886-X Ford, K.: Vinogradov’s integral and bounds for the Riemann zeta function. Proc. Lond. Math. Soc. 85(3), 565–633 (2002) Ford, K.: Maximal collections of intersecting arithmetic progressions. Combinatorica 23(2), 263–281 (2003) Ford, K.: A strong form of a problem of R. L. Graham. Can. Math. Bull. 47(3), 358–368 (2004) Hajdu, L., Saradha, N., Tijdeman, R.: On a conjecture of Pomerance. Acta Arith. 155(2), 175–184 (2012) Helfgott, H.: Major Arcs for Goldbach’s Problem (2013). arXiv:1305.2897v2 Kadiri, H.: Une région explicite sans zéros pour la fonction \(\zeta \) de Riemann. Acta Arith. 117(4), 303–339 (2005) Kotnik, T.: The prime-counting function and its analytic approximations. Adv. Comput. Math. 29(1), 55–70 (2008) Nicely, T.R., Nyman, B.: New prime gaps between \(10^{15}\) and \(5\times 10^{16}\). J. Integer Seq. 6(3), 1–6 (2003) Platt, D.J.: Computing \(\pi (x)\) analytically. Math. Comp. (2014). doi:10.1090/S0025-5718-2014-02884-6 Pomerance, C.: A note on the least prime in an arithmetic progression. J. Number Theory 12, 218–223 (1980) Ramaré, O., Rumely, R.: Primes in arithmetic progressions. Math. Comput. 65(213), 397–425 (1996) Ramaré, O., Saouter, Y.: Short effective intervals containing primes. J. Number Theory 98, 10–33 (2003) Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962) Rosser, J.B., Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\). Math. Comput. 29(129), 243–269 (1975) Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\), II. Math. Comput. 30(134), 337–360 (1976) Togbé, A., Yang, S.: Proof of the \({P}\)-integer conjecture of Pomerance. J. Number Theory 140, 226–234 (2014)