Rap1 mediates sustained MAP kinase activation induced by nerve growth factor

Nature - Tập 392 Số 6676 - Trang 622-626 - 1998
Randall D. York1, Hong Yao1, Tara J. Dillon1, Cindy L. Ellig1, Stephani P. Eckert1, Edwin W. McCleskey1, Philip A. Stork2
1The Vollum Institute for Advanced Biomedical Research, Portland, USA
2Department of Pathology, Oregon Health Sciences University, Portland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

Dichter, M. A., Tischler, A. S. & Greene, L. A. Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature 268, 501–504 (1977).

Greenberg, M. E., Greene, L. A. & Ziff, E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J. Biol. Chem. 260, 14101–14110 (1958).

Cowley, S., Paterson, H., Kemp, P. & Marshall, C. J. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell 77, 841–852 (1994).

Traverse, S.et al. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4, 694–701 (1994).

Pan, M.-G., Wang, Y.-H., Hirsch, D. D., Labudda, K. & Stork, P. J. S. The Wnt-1 proto-oncogene regulates MAP kinase activation by multiple growth factors in PC12 cells. Oncogene 11, 2005–2012 (1995).

Yao, H.et al. Cyclic adenosine monophosphate can convert epidermal growth factor into a differentiating factor in neuronal cells. J. Biol. Chem. 270, 20748–20753 (1995).

Porfiri, E. & McCormick, F. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J. Biol. Chem. 271, 5871–5877 (1996).

Vossler, M.et al. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89, 73–82 (1997).

Thomas, S. M., DeMarco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. S. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 78, 1031–1040 (1992).

Wood, K. W., Sarnecki, C., Roberts, T. M. & Blenis, J. Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, raf-1, and RSK. Cell 68, 1041–1050 (1992).

Jaiswal, R. K., Weissinger, E., Kolch, W. & Landreth, G. E. Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J. Biol. Chem. 271, 23626–23629 (1996).

Ihara, S.et al. Dual control of neurite outgrowth by STAT3 and MAP kinase in PC12 cells stimulated with interleukin-6. EMBO J. 16, 5345–5352 (1997).

Mandel, G., Cooperman, S. S., Maue, R. A., Goodman, R. H. & Brehn, P. Selective induction of brain type II Na+ channels by nerve growth factor. Proc. Natl Acad. Sci. 85, 924–928 (1988).

Fanger, G. R., Erhardt, P., Cooper, G. M. & Maue, R. A. Ras-independent induction of rat brain type II sodium channel expression in nerve growth factor-treated PC12 cells. J. Neurochem. 61, 1977–1980 (1993).

D'Arcangelo, G. & Halegoua, S. Abranched signaling pathway for nerve growth factor is revealed by src-, ras-, and raf-mediated gene inductions. Mol. Cell. Biol. 13, 3146–3155 (1993).

deSouza, S., Lochner, J., Machida, C. M., Matrisian, L. M. & Ciment, G. Anovel NGF-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells. J. Biol. Chem. 270, 9106–9114 (1995).

Tanaka, S.et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc. Natl Acad. Sci. USA 91, 3443–3447 (1994).

Knudsen, B. S., Feller, S. M. & Hanafusa, H. Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J. Biol. Chem. 269, 32781–32787 (1994).

Gotoh, T.et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15, 6746–6753 (1995).

Matsuda, M.et al. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol. Cell. Biol. 14, 5495–5500 (1994).

Feller, S. M., Knudsen, B. & Hanafusa, H. Cellular proteins binding to the first Src homology 3 (SH3) domain of the proto-oncogene product c-Crk indicate Crk-specific signaling pathways. Oncogene 10, 1465–1473 (1995).

Reedquist, K. A.et al. Stimulation through the T cell receptor induces Cbl association with Crk proteins and the guanine nucleotide exchange protein C3G. J. Biol. Chem. 271, 8435–8442 (1996).

Smit, L., van der Horst, G. & Borst, J. Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors. J. Biol. Chem. 271, 8564–8569 (1996).

Uemura, N.et al. The BCR/ABL oncogene alters interaction of the adapter proteins Crk-L and Crk with cellular proteins. Leukemia 11, 376–385 (1997).

Tanaka, S., Ouchi, T. & Hanafusa, H. Downstream of Crk adaptor signaling pathway: activation of jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc. Natl Acad. Sci. USA 94, 2356–2361 (1996).

Hirsch, D. D. & Stork, P. J. S. MAP kinase phosphatases incativate stress-activated protein kinase pathways in vivo. J. Biol. Chem. 272, 4568–4575 (1997).

Tanaka, S.et al. Both the SH2 and SH3 domains of human Crk protein are required for neuronal differentiation of PC12 cells. Mol. Cell. Biol. 13, 4409–4415 (1993).

Tanaka, M., Gupta, R. & Mayer, B. J. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adaptor proteins. Mol. Cell. Biol. 15, 6829–6837 (1995).

Boussiotis, V. A., Freeman, G. J., Berezovshaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).