Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d

Cell - Tập 175 - Trang 212-223.e17 - 2018
Cheng Zhang1,2, Silvana Konermann3,2, Nicholas J. Brideau3,2, Peter Lotfy3,2, Xuebing Wu4, Scott J. Novick5, Timothy Strutzenberg5, Patrick R. Griffin5, Patrick D. Hsu3,2, Dmitry Lyumkis1,2
1Laboratory of Genetics, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
2Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
3Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
4Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA
5Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA

Tài liệu tham khảo

Abudayyeh, 2017, RNA targeting with CRISPR-Cas13, Nature, 550, 280, 10.1038/nature24049 Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573 Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925 Anantharaman, 2013, Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing, Biol. Direct, 8, 15, 10.1186/1745-6150-8-15 Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140 Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689 Chalmers, 2006, Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry, Anal. Chem., 78, 1005, 10.1021/ac051294f Chen, 2010, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr., 66, 12, 10.1107/S0907444909042073 Cox, 2017, RNA editing with CRISPR-Cas13, Science, 358, 1019, 10.1126/science.aaq0180 Dahlman, 2015, Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease, Nat. Biotechnol., 33, 1159, 10.1038/nbt.3390 East-Seletsky, 2016, Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270, 10.1038/nature19802 Emsley, 2010, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Englander, 2006, Hydrogen exchange and mass spectrometry: A historical perspective, J. Am. Soc. Mass Spectrom., 17, 1481, 10.1016/j.jasms.2006.06.006 Garcia-Doval, 2017, Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases, Curr. Opin. Struct. Biol., 47, 157, 10.1016/j.sbi.2017.10.015 Gootenberg, 2017, Nucleic acid detection with CRISPR-Cas13a/C2c2, Science, 356, 438, 10.1126/science.aam9321 Grant, 2015, Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6, eLife, 4, e06980, 10.7554/eLife.06980 Grant, 2018, cisTEM, user-friendly software for single-particle image processing, eLife, 7, e35383, 10.7554/eLife.35383 Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040 Han, 2014, Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response, Science, 343, 1244, 10.1126/science.1249845 Hohn, 2007, SPARX, a new environment for Cryo-EM image processing, J Struct Biol., 157, 47, 10.1016/j.jsb.2006.07.003 Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647 Jiang, 2016, Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity, Cell, 164, 710, 10.1016/j.cell.2015.12.053 Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 1247997, 10.1126/science.1247997 Kazlauskiene, 2017, A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems, Science, 357, 605, 10.1126/science.aao0100 Keppel, 2015, Mapping residual structure in intrinsically disordered proteins at residue resolution using millisecond hydrogen/deuterium exchange and residue averaging, J. Am. Soc. Mass Spectrom., 26, 547, 10.1007/s13361-014-1033-6 Kiani, 2015, Cas9 gRNA engineering for genome editing, activation and repression, Nat. Methods, 12, 1051, 10.1038/nmeth.3580 Kimanius, 2016, Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2, eLife, 5, e18722, 10.7554/eLife.18722 Knott, 2017, Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme, Nat. Struct. Mol. Biol., 24, 825, 10.1038/nsmb.3466 Konermann, 2018, Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors, Cell, 173, 665, 10.1016/j.cell.2018.02.033 Koonin, 2017, Diversity, classification and evolution of CRISPR-Cas systems, Curr. Opin. Microbiol., 37, 67, 10.1016/j.mib.2017.05.008 Lander, 2009, Appion: an integrated, database-driven pipeline to facilitate EM image processing, J. Struct. Biol., 166, 95, 10.1016/j.jsb.2009.01.002 Liu, 2017, The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a, Cell, 170, 714, 10.1016/j.cell.2017.06.050 Liu, 2017, Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities, Cell, 168, 121, 10.1016/j.cell.2016.12.031 Lu, 2014, Three-dimensional structure of human γ-secretase, Nature, 512, 166, 10.1038/nature13567 Niewoehner, 2017, Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers, Nature, 548, 543, 10.1038/nature23467 Niewoehner, 2016, Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6, RNA, 22, 318, 10.1261/rna.054098.115 Nishimasu, 2015, Crystal Structure of Staphylococcus aureus Cas9, Cell, 162, 1113, 10.1016/j.cell.2015.08.007 Nishimasu, 2014, Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, 156, 935, 10.1016/j.cell.2014.02.001 Pascal, 2012, HDX workbench: software for the analysis of H/D exchange MS data, J. Am. Soc. Mass Spectrom., 23, 1512, 10.1007/s13361-012-0419-6 Pettersen, 2004, UCSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem., 25, 1605, 10.1002/jcc.20084 Rohou, 2015, CTFFIND4: Fast and accurate defocus estimation from electron micrographs, J. Struct. Biol., 192, 216, 10.1016/j.jsb.2015.08.008 Roseman, 2004, FindEM--a fast, efficient program for automatic selection of particles from electron micrographs, J. Struct. Biol., 145, 91, 10.1016/j.jsb.2003.11.007 Samai, 2015, Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity, Cell, 161, 1164, 10.1016/j.cell.2015.04.027 Scheres, 2012, RELION: Implementation of a Bayesian approach to cryo-EM structure determination, J Struct Biol., 180, 519, 10.1016/j.jsb.2012.09.006 Shmakov, 2015, Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems, Mol. Cell, 60, 385, 10.1016/j.molcel.2015.10.008 Singh, 2018, Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a), Proc. Natl. Acad. Sci. USA, 115, 5444, 10.1073/pnas.1718686115 Smargon, 2017, Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28, Mol Cell, 65, 618, 10.1016/j.molcel.2016.12.023 Snijder, 2017, Vitrification after multiple rounds of sample application and blotting improves particle density on cryo-electron microscopy grids, J. Struct. Biol., 198, 38, 10.1016/j.jsb.2017.02.008 Sternberg, 2015, Conformational control of DNA target cleavage by CRISPR-Cas9, Nature, 527, 110, 10.1038/nature15544 Sternberg, 2014, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62, 10.1038/nature13011 Suloway, 2005, Automated molecular microscopy: the new Leginon system, J. Struct. Biol., 151, 41, 10.1016/j.jsb.2005.03.010 Swarts, 2017, Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a, Mol Cell, 66, 221, 10.1016/j.molcel.2017.03.016 Tambe, 2018, RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a, Cell Rep., 24, 1025, 10.1016/j.celrep.2018.06.105 Tan, 2017, Addressing preferred specimen orientation in single-particle cryo-EM through tilting, Nat. Methods, 14, 793, 10.1038/nmeth.4347 Yan, 2018, Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein, Mol Cell, 70, 327, 10.1016/j.molcel.2018.02.028 Zhang, 2016, Gctf: Real-time CTF determination and correction, J. Struct. Biol., 193, 1, 10.1016/j.jsb.2015.11.003 Zhang, 1993, Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation, Protein Sci., 2, 522, 10.1002/pro.5560020404 Zheng, 2017, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy, Nat. Methods, 14, 331, 10.1038/nmeth.4193