Review of energy storage services, applications, limitations, and benefits
Tài liệu tham khảo
Abraham, 2015, The prospects and limits of energy storage in batteries, J. Phys. Chem. Lett., 6, 10.1021/jz5026273
AEA (Association of Electoral Administration), 2010
Al-Badi, 2019, Growing energy demand in GCC countries, Arab J. Basic Appl. Sci., 26, 488, 10.1080/25765299.2019.1687396
Al-Sarihi, 2019
Ali, 2010, An overview of SMES applications in power and energysystems, IEEE Trans. Sustain. Energy, 1, 38, 10.1109/TSTE.2010.2044901
Almulla, 2014
Amiryar, 2017, A review of flywheel energy storage system technologies and their applications, Appl. Sci., 7, 1, 10.3390/app7030286
Ammar, 2013, Analytic hierarchy process selection for batteries storage technologies, J. Electr. Electron. Syst., 10, 1
Anzano, 1989, Stockage de l’électricité dans le système de production électrique, Tech. l’ingénieur, Traité de Génie Électr. D, 4030
Arab Future Energy Index, 2015
Arteconi, 2013, Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems, Appl. Therm. Eng., 51, 155, 10.1016/j.applthermaleng.2012.09.023
ARUP, 2014
Baker, 2008, New technology and possible advances in energy storage, Energy Policy, 36, 4368, 10.1016/j.enpol.2008.09.040
Belderbos, 2016
Beltran, 2018, Introduction: Energy in history, the history of energy, J. Energy Hist./Rev. d’Histoire de l’Énergie
Bonte, 2013, Environmental impacts of aquifer thermal energy storage investigated by field and laboratory experiments, J. Water Clim. Change, 4, 77, 10.2166/wcc.2013.061
Boom, 1972, Superconductive energy storage for power systems, IEEE Trans. Manage., 8, 701
BP Statistical Review, 2019
Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nature Mater., 11, 19, 10.1038/nmat3191
Bueno, 2006, Wind-powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands, Renew. Sustain. Energy Rev., 10, 312, 10.1016/j.rser.2004.09.005
Bullough, C., Gatzen,, Jakiel, C., Koller, M., Nowi, A., Zunft, S., 2004. Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proc. Eur. Wind Energy Conf. Vol. 25. EWEC. Nov. 2004.
Castillo, 2014, Grid-scale energy storage applications in renewable energy integration: A survey, Energy Convers. Manage., 87, 885, 10.1016/j.enconman.2014.07.063
Chen, 2008, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19, 291, 10.1016/j.pnsc.2008.07.014
Chen, 2018, Improved all-vanadium redox flow batteries using catholyte additive and a cross-linked methylated polybenzimidazole membrane, ACS Appl. Energy Mater., 1, 6047, 10.1021/acsaem.8b01116
Cheng, J., Choobineh, F.F., 2017. A comparative study of the storage assisted wind power conversion systems. In: Proc. 6th Int. Conf. Clean Elect. Power, pp. 608–613. 2017.
Cho, 2015, Commercial and research battery technologies for electrical energy storage applications, Prog. Energy Combust. Sci., 48, 84, 10.1016/j.pecs.2015.01.002
CIA, 2019
Circuit Globe, 2019
Cooper, 2016
Díaz-González, 2013, Energy management of flywheel-based energy storage device for wind power smoothing, Appl. Energy, 110, 207, 10.1016/j.apenergy.2013.04.029
Díaz-González, 2012, A review of energy storage technologies for wind power applications, Renew. Sustain. Energy Rev., 16, 2154, 10.1016/j.rser.2012.01.029
Ding, 2016, Wind power peak-valley regulation and frequency control technology in large-scale wind power grid integration, 211
Doetsch, 2014
DTI (Department of Trade and Industry) Report, 2004, 1
EPA (Environmental Protection Agency), 2019
ESA (Energy Storage Association), 2019
European Commission,, 2019. DG ENER Working Paper: The future role and challenges of Energy Storage available at https://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf.
Evans, 2012, Assessment of utility energy storage options for increased renewable energy penetration, Renew. Sustain. Energy Rev., 16, 4141, 10.1016/j.rser.2012.03.048
Eyer, 2010
Fairweather, 2013, Evaluation of Ultra Battery TM performance in comparison with a battery-supercapacitor parallel network, J. Power Sources, 226, 191, 10.1016/j.jpowsour.2012.10.095
Farret, 2006, 262
Faure, 2003
Fletcher, 2011
Florin, 2017
Fortune Business Insights, 2019
Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4
Günter, 2015
Hall, 2008, Energy-storage technologies and electricity generation, Energy Policy, 36, 4352, 10.1016/j.enpol.2008.09.037
Hamajima, 2012, Application of SMES and fuel cell system combined with liquid hydrogen vehicle station to renewable energy control, IEEE Trans. Appl. Supercond., 22, 10.1109/TASC.2011.2175687
Hemmati, 2016, Emergence of hybrid energy storage systems in renewable energy and transport applications – A review, Renew. Sustain. Energy Rev., 65, 11, 10.1016/j.rser.2016.06.029
HNAC, 2019
Hwang, 2018, Application of the commercial ion exchange membranes in the all vanadium redox flow battery, J. Ind. Eng. Chem., 60, 360, 10.1016/j.jiec.2017.11.023
Ibrahim, 2013, Techno-economic analysis of different energy storage technologies
Ibrahim, 2008, Energy storage systems, characteristics, and comparisons, Renew. Sustain. Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023
Ibrahim, 2008, Energy storage systems -Characteristics, and comparisons, Renew. Sustain. Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023
IEA, 2019
IRENA, 2017
IRENA (International Renewal Energy Agency), 2013
Isah, 2018, Advanced materials for energy storage devices (Review), Asian J. Nanosci. Mater., 1, 90
Jamahori, H.F., Rahman, H.A., 2017. Hybrid energy storage system for life cycle improvement. In: Proc. IEEE Conf. Energy Convers. pp. 196–200. Oct. 2017.
James, 2004
Jung, 2010
Jung, 2018, Porous–Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries, Appl. Surf. Sci., 450, 301, 10.1016/j.apsusc.2018.04.198
Khamis, Z.M., Badarudin,, Ahmad, A., Rahman, A.A., Hairi, M.H., 2010. Overview of mini-scale compressed air energy storage system. In: Proc. Int. Power Eng. Optim. Conf. pp. 458–462, Jun. 2010.
Kim, 2019
King, 2019
Kirby, 2007
Kirschen, 2005
Kondoh, 2000, Electrical energy storage systems for energy networks, Energy Convers. Manage., 41, 1863, 10.1016/S0196-8904(00)00028-5
Kougias, 2017, Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?, Energy, 140, 318, 10.1016/j.energy.2017.08.106
Krüger, 2019, Slag as an inventory material for heat storage in a concentrated solar tower power plant: Design studies and systematic comparative assessment, Appl. Sci., 9, 1, 10.3390/app9091833
Lee, 2019, Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries, J. Appl. Polym. Sci., 136
Liu, 2010, Advanced materials for energy storage, Adv. Mater., 22, E28, 10.1002/adma.200903328
Louie, 2007, Superconducting magnetic energy storage (SMES) for energy cache-control in modular distributed hydrogen-electric energy systems, IEEE Trans. Appl. Supercond., 17, 2361, 10.1109/TASC.2007.898490
Luo, 2015, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081
Market, 2019
Martinez, 2013, Dynamic modeling simulation and control of hybrid energy storage system based on compressed air and supercapacitors, IEEE Latin Am. Trans., 11, 466, 10.1109/TLA.2013.6502847
Maryam, 2019, The role of energy storage in deep decarbonization of electricity production, Nat. Commun., 10, 3413, 10.1038/s41467-019-11161-5
Mass.gov., 2015
Mathew, 2012
Mears, 2003
Merlet, 2012, On the molecular origin of super capacitance in nano-porous carbon electrodes, Nat. Mater., 11, 306, 10.1038/nmat3260
Metz, 2016
Moghadasi, 2010, Pareto optimality for the design of SMES solenoid coils verified by a magnetic field analysis, IEEE Trans. Appl. Supercond., 21, 13, 10.1109/TASC.2010.2089791
Mohamad, 2018, Development of energy storage systems for power network reliability: A review, Energies, 11, 1
Mohd, Alaa, Ortjohann, Egon, Schmelter, Andreas, Hamsic, Nedzad, Morton, Danny, 2008. Challenges in integrating distributed Energy storage systems into a future smart grid. In: IEEE International Symposium on Industrial Electronics, June 30–July 2. 2008.
Molina, 2017, Energy storage and power electronics technologies: A strong combination to empower the transformation to the smart grid, Proc. IEEE, 105, 2191, 10.1109/JPROC.2017.2702627
Mongird, 2019, 1
Multon, 2003
Nadeem, 2019, Comparative review of energy storage systems, their roles, and impacts on future power systems in, IEEE Access, 7, 4555, 10.1109/ACCESS.2018.2888497
NC State University, 2018
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Parameshwaran, 2012, Sustainable thermal energy storage technologies for buildings: A review, Renew. Sustain. Energy Rev., 16, 2394, 10.1016/j.rser.2012.01.058
Pearre, 2014, Techno-economic feasibility of grid storage: Mapping electrical services and energy storage technologies, Appl. Energy, 137, 501, 10.1016/j.apenergy.2014.04.050
Pena-Alzola, 2011, Review of the flywheel -based energy storage systems, 1
Poullikkas, 2013, A comparative overview of large-scale battery systems for electricity storage, Renew. Sustain. Energy Rev., 27, 778, 10.1016/j.rser.2013.07.017
Prieto, 2017, Thermal energy storage evaluation in direct steam generation solar plants, Sol. Energy, 159, 501, 10.1016/j.solener.2017.11.006
Qureshi, 2011, Impact of energy storage in buildings on electricity demand-side management, Energy Convers. Manage., 52, 2110, 10.1016/j.enconman.2010.12.008
Rahul, 2008
Rao, 1977, Lithium-aluminum electrode, J. Electrochem. Soc., 124, 1490, 10.1149/1.2133098
Revankar, 2019, 177
Rinaldo, 2015, Advanced materials for energy storage devices, Nature Mater., 14, 271
Ritchie, 2018
Ritchie, 2019
Rodrigues, 2017, Electrical energy storage systems feasibility; the case of Terceira island, Sustainbility, 9, 1276, 10.3390/su9071276
Rugolo, 2012, Electricity storage for intermittent renewable sources, Energy Environ. Soc., 5, 7151, 10.1039/c2ee02542f
San Martín, 2011, Energy storage technologies for electric applications. european association for the development of renewable energies
Sharma, 2016, Accelerated thermal cycle and chemical stability testing of Polyethylene glycol (PEG) 6000 for solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 151, 235, 10.1016/j.solmat.2015.12.023
Sisternes, 2019, The value of energy storage in decarbonizing the electricity sector, Appl. Energy, 175, 368, 10.1016/j.apenergy.2016.05.014
Zakerin, 2015, Electrical energy storage systems: A comparative life cycle cost analysis, Renew. Sustain. Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011
Zanganeh, 2014, Design of a 100 MWhth packed-bed thermal energy storage, Energy Procedia, 49, 1071, 10.1016/j.egypro.2014.03.116
Zohuri, 2018
Enerdata, 2018
IEC (International Electrotechnical Commission),, 2011. Electrical energy storage white paper. International Electrotechnical Commission, 3 rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland. available at https://www.iec.ch/whitepaper/energystorage/.
Mohammad, 2018, Review of energy storage system technologies in microgrid applications: Issues and challenges, IEEE Access, 6, 35143, 10.1109/ACCESS.2018.2841407
Puri-Mirza, 2015