Review of energy storage services, applications, limitations, and benefits

Energy Reports - Tập 6 - Trang 288-306 - 2020
Ahmed Zayed AL Shaqsi1, Kamaruzzaman Sopian1, Amer Al-Hinai2
1Universiti Kebangsaan Malaysia, Malaysia
2Sultan Qaboos University, Oman

Tài liệu tham khảo

Abraham, 2015, The prospects and limits of energy storage in batteries, J. Phys. Chem. Lett., 6, 10.1021/jz5026273 AEA (Association of Electoral Administration), 2010 Al-Badi, 2019, Growing energy demand in GCC countries, Arab J. Basic Appl. Sci., 26, 488, 10.1080/25765299.2019.1687396 Al-Sarihi, 2019 Ali, 2010, An overview of SMES applications in power and energysystems, IEEE Trans. Sustain. Energy, 1, 38, 10.1109/TSTE.2010.2044901 Almulla, 2014 Amiryar, 2017, A review of flywheel energy storage system technologies and their applications, Appl. Sci., 7, 1, 10.3390/app7030286 Ammar, 2013, Analytic hierarchy process selection for batteries storage technologies, J. Electr. Electron. Syst., 10, 1 Anzano, 1989, Stockage de l’électricité dans le système de production électrique, Tech. l’ingénieur, Traité de Génie Électr. D, 4030 Arab Future Energy Index, 2015 Arteconi, 2013, Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems, Appl. Therm. Eng., 51, 155, 10.1016/j.applthermaleng.2012.09.023 ARUP, 2014 Baker, 2008, New technology and possible advances in energy storage, Energy Policy, 36, 4368, 10.1016/j.enpol.2008.09.040 Belderbos, 2016 Beltran, 2018, Introduction: Energy in history, the history of energy, J. Energy Hist./Rev. d’Histoire de l’Énergie Bonte, 2013, Environmental impacts of aquifer thermal energy storage investigated by field and laboratory experiments, J. Water Clim. Change, 4, 77, 10.2166/wcc.2013.061 Boom, 1972, Superconductive energy storage for power systems, IEEE Trans. Manage., 8, 701 BP Statistical Review, 2019 Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nature Mater., 11, 19, 10.1038/nmat3191 Bueno, 2006, Wind-powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands, Renew. Sustain. Energy Rev., 10, 312, 10.1016/j.rser.2004.09.005 Bullough, C., Gatzen,, Jakiel, C., Koller, M., Nowi, A., Zunft, S., 2004. Advanced adiabatic compressed air energy storage for the integration of wind energy. In: Proc. Eur. Wind Energy Conf. Vol. 25. EWEC. Nov. 2004. Castillo, 2014, Grid-scale energy storage applications in renewable energy integration: A survey, Energy Convers. Manage., 87, 885, 10.1016/j.enconman.2014.07.063 Chen, 2008, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19, 291, 10.1016/j.pnsc.2008.07.014 Chen, 2018, Improved all-vanadium redox flow batteries using catholyte additive and a cross-linked methylated polybenzimidazole membrane, ACS Appl. Energy Mater., 1, 6047, 10.1021/acsaem.8b01116 Cheng, J., Choobineh, F.F., 2017. A comparative study of the storage assisted wind power conversion systems. In: Proc. 6th Int. Conf. Clean Elect. Power, pp. 608–613. 2017. Cho, 2015, Commercial and research battery technologies for electrical energy storage applications, Prog. Energy Combust. Sci., 48, 84, 10.1016/j.pecs.2015.01.002 CIA, 2019 Circuit Globe, 2019 Cooper, 2016 Díaz-González, 2013, Energy management of flywheel-based energy storage device for wind power smoothing, Appl. Energy, 110, 207, 10.1016/j.apenergy.2013.04.029 Díaz-González, 2012, A review of energy storage technologies for wind power applications, Renew. Sustain. Energy Rev., 16, 2154, 10.1016/j.rser.2012.01.029 Ding, 2016, Wind power peak-valley regulation and frequency control technology in large-scale wind power grid integration, 211 Doetsch, 2014 DTI (Department of Trade and Industry) Report, 2004, 1 EPA (Environmental Protection Agency), 2019 ESA (Energy Storage Association), 2019 European Commission,, 2019. DG ENER Working Paper: The future role and challenges of Energy Storage available at https://ec.europa.eu/energy/sites/ener/files/energy_storage.pdf. Evans, 2012, Assessment of utility energy storage options for increased renewable energy penetration, Renew. Sustain. Energy Rev., 16, 4141, 10.1016/j.rser.2012.03.048 Eyer, 2010 Fairweather, 2013, Evaluation of Ultra Battery TM performance in comparison with a battery-supercapacitor parallel network, J. Power Sources, 226, 191, 10.1016/j.jpowsour.2012.10.095 Farret, 2006, 262 Faure, 2003 Fletcher, 2011 Florin, 2017 Fortune Business Insights, 2019 Frackowiak, 2001, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 937, 10.1016/S0008-6223(00)00183-4 Günter, 2015 Hall, 2008, Energy-storage technologies and electricity generation, Energy Policy, 36, 4352, 10.1016/j.enpol.2008.09.037 Hamajima, 2012, Application of SMES and fuel cell system combined with liquid hydrogen vehicle station to renewable energy control, IEEE Trans. Appl. Supercond., 22, 10.1109/TASC.2011.2175687 Hemmati, 2016, Emergence of hybrid energy storage systems in renewable energy and transport applications – A review, Renew. Sustain. Energy Rev., 65, 11, 10.1016/j.rser.2016.06.029 HNAC, 2019 Hwang, 2018, Application of the commercial ion exchange membranes in the all vanadium redox flow battery, J. Ind. Eng. Chem., 60, 360, 10.1016/j.jiec.2017.11.023 Ibrahim, 2013, Techno-economic analysis of different energy storage technologies Ibrahim, 2008, Energy storage systems, characteristics, and comparisons, Renew. Sustain. Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023 Ibrahim, 2008, Energy storage systems -Characteristics, and comparisons, Renew. Sustain. Energy Rev., 12, 1221, 10.1016/j.rser.2007.01.023 IEA, 2019 IRENA, 2017 IRENA (International Renewal Energy Agency), 2013 Isah, 2018, Advanced materials for energy storage devices (Review), Asian J. Nanosci. Mater., 1, 90 Jamahori, H.F., Rahman, H.A., 2017. Hybrid energy storage system for life cycle improvement. In: Proc. IEEE Conf. Energy Convers. pp. 196–200. Oct. 2017. James, 2004 Jung, 2010 Jung, 2018, Porous–Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries, Appl. Surf. Sci., 450, 301, 10.1016/j.apsusc.2018.04.198 Khamis, Z.M., Badarudin,, Ahmad, A., Rahman, A.A., Hairi, M.H., 2010. Overview of mini-scale compressed air energy storage system. In: Proc. Int. Power Eng. Optim. Conf. pp. 458–462, Jun. 2010. Kim, 2019 King, 2019 Kirby, 2007 Kirschen, 2005 Kondoh, 2000, Electrical energy storage systems for energy networks, Energy Convers. Manage., 41, 1863, 10.1016/S0196-8904(00)00028-5 Kougias, 2017, Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?, Energy, 140, 318, 10.1016/j.energy.2017.08.106 Krüger, 2019, Slag as an inventory material for heat storage in a concentrated solar tower power plant: Design studies and systematic comparative assessment, Appl. Sci., 9, 1, 10.3390/app9091833 Lee, 2019, Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries, J. Appl. Polym. Sci., 136 Liu, 2010, Advanced materials for energy storage, Adv. Mater., 22, E28, 10.1002/adma.200903328 Louie, 2007, Superconducting magnetic energy storage (SMES) for energy cache-control in modular distributed hydrogen-electric energy systems, IEEE Trans. Appl. Supercond., 17, 2361, 10.1109/TASC.2007.898490 Luo, 2015, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, 511, 10.1016/j.apenergy.2014.09.081 Market, 2019 Martinez, 2013, Dynamic modeling simulation and control of hybrid energy storage system based on compressed air and supercapacitors, IEEE Latin Am. Trans., 11, 466, 10.1109/TLA.2013.6502847 Maryam, 2019, The role of energy storage in deep decarbonization of electricity production, Nat. Commun., 10, 3413, 10.1038/s41467-019-11161-5 Mass.gov., 2015 Mathew, 2012 Mears, 2003 Merlet, 2012, On the molecular origin of super capacitance in nano-porous carbon electrodes, Nat. Mater., 11, 306, 10.1038/nmat3260 Metz, 2016 Moghadasi, 2010, Pareto optimality for the design of SMES solenoid coils verified by a magnetic field analysis, IEEE Trans. Appl. Supercond., 21, 13, 10.1109/TASC.2010.2089791 Mohamad, 2018, Development of energy storage systems for power network reliability: A review, Energies, 11, 1 Mohd, Alaa, Ortjohann, Egon, Schmelter, Andreas, Hamsic, Nedzad, Morton, Danny, 2008. Challenges in integrating distributed Energy storage systems into a future smart grid. In: IEEE International Symposium on Industrial Electronics, June 30–July 2. 2008. Molina, 2017, Energy storage and power electronics technologies: A strong combination to empower the transformation to the smart grid, Proc. IEEE, 105, 2191, 10.1109/JPROC.2017.2702627 Mongird, 2019, 1 Multon, 2003 Nadeem, 2019, Comparative review of energy storage systems, their roles, and impacts on future power systems in, IEEE Access, 7, 4555, 10.1109/ACCESS.2018.2888497 NC State University, 2018 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Parameshwaran, 2012, Sustainable thermal energy storage technologies for buildings: A review, Renew. Sustain. Energy Rev., 16, 2394, 10.1016/j.rser.2012.01.058 Pearre, 2014, Techno-economic feasibility of grid storage: Mapping electrical services and energy storage technologies, Appl. Energy, 137, 501, 10.1016/j.apenergy.2014.04.050 Pena-Alzola, 2011, Review of the flywheel -based energy storage systems, 1 Poullikkas, 2013, A comparative overview of large-scale battery systems for electricity storage, Renew. Sustain. Energy Rev., 27, 778, 10.1016/j.rser.2013.07.017 Prieto, 2017, Thermal energy storage evaluation in direct steam generation solar plants, Sol. Energy, 159, 501, 10.1016/j.solener.2017.11.006 Qureshi, 2011, Impact of energy storage in buildings on electricity demand-side management, Energy Convers. Manage., 52, 2110, 10.1016/j.enconman.2010.12.008 Rahul, 2008 Rao, 1977, Lithium-aluminum electrode, J. Electrochem. Soc., 124, 1490, 10.1149/1.2133098 Revankar, 2019, 177 Rinaldo, 2015, Advanced materials for energy storage devices, Nature Mater., 14, 271 Ritchie, 2018 Ritchie, 2019 Rodrigues, 2017, Electrical energy storage systems feasibility; the case of Terceira island, Sustainbility, 9, 1276, 10.3390/su9071276 Rugolo, 2012, Electricity storage for intermittent renewable sources, Energy Environ. Soc., 5, 7151, 10.1039/c2ee02542f San Martín, 2011, Energy storage technologies for electric applications. european association for the development of renewable energies Sharma, 2016, Accelerated thermal cycle and chemical stability testing of Polyethylene glycol (PEG) 6000 for solar thermal energy storage, Sol. Energy Mater. Sol. Cells, 151, 235, 10.1016/j.solmat.2015.12.023 Sisternes, 2019, The value of energy storage in decarbonizing the electricity sector, Appl. Energy, 175, 368, 10.1016/j.apenergy.2016.05.014 Zakerin, 2015, Electrical energy storage systems: A comparative life cycle cost analysis, Renew. Sustain. Energy Rev., 42, 569, 10.1016/j.rser.2014.10.011 Zanganeh, 2014, Design of a 100 MWhth packed-bed thermal energy storage, Energy Procedia, 49, 1071, 10.1016/j.egypro.2014.03.116 Zohuri, 2018 Enerdata, 2018 IEC (International Electrotechnical Commission),, 2011. Electrical energy storage white paper. International Electrotechnical Commission, 3 rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland. available at https://www.iec.ch/whitepaper/energystorage/. Mohammad, 2018, Review of energy storage system technologies in microgrid applications: Issues and challenges, IEEE Access, 6, 35143, 10.1109/ACCESS.2018.2841407 Puri-Mirza, 2015