First-principles study of the small molecule adsorption on the InSe monolayer

Applied Surface Science - Tập 426 - Trang 244-252 - 2017
Dongwei Ma1,2, Weiwei Ju3, Yanan Tang4, Yue Chen2
1School of Physics, Anyang Normal University, Anyang 455000, China
2Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
3College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
4College of physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China

Tài liệu tham khảo

Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Kim, 2012, Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition, Nano Lett., 12, 161, 10.1021/nl203249a Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotech., 9, 372, 10.1038/nnano.2014.35 Vogt, 2012, Silicene compelling experimental evidence for graphenelike two-Dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501 Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 095002, 10.1088/1367-2630/16/9/095002 Ji, 2016, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun., 7, 13352, 10.1038/ncomms13352 Zhang, 2015, Atomically thin arsenene and antimonene: semimetal?Semiconductor and Indirect–Direct band-Gap transitions, Angew. Chem. Int. Ed., 54, 3112, 10.1002/anie.201411246 Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotech., 12, 21, 10.1038/nnano.2016.171 Lee, 2012, MoS2 nanosheet phototransistors with thickness-Modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Pumera, 2011, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 4, 668, 10.1039/C0EE00295J Varghese, 2015, Two-Dimensional materials for sensing: graphene and beyond, Electron, 4, 651, 10.3390/electronics4030651 Yang, 2016, Two-dimensional layered nanomaterials for gas-sensing applications, Inorg. Chem. Front., 3, 433, 10.1039/C5QI00251F Lightcap, 2013, Graphitic design prospects of graphene-Based nanocomposites for solar energy conversion, storage, and sensing, Acc. Chem. Res., 46, 2235, 10.1021/ar300248f Xu, 2016, Synthesis, properties and applications of 2D layered MIIIXVI (M=Ga In; X=S, Se, Te) materials, Nanoscale, 8, 16802, 10.1039/C6NR05976G Bandurin, 2017, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotech., 12, 223, 10.1038/nnano.2016.242 Debbichi, 2015, Two-Dimensional indium selenides compounds: an ab initio study, J. Phys. Chem. Lett., 6, 3098, 10.1021/acs.jpclett.5b01356 Mudd, 2013, Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement, Adv. Mater., 25, 5714, 10.1002/adma.201302616 Mudd, 2014, Quantum confined acceptors and donors in InSe nanosheets, Appl. Phys. Lett., 105, 221909, 10.1063/1.4903738 Feng, 2015, Gate modulation of threshold voltage instability in multilayer InSe field effect transistors, ACS Appl. Mater. Interfaces, 7, 26691, 10.1021/acsami.5b08635 Lauth, 2016, Solution-processed two-dimensional ultrathin InSe nanosheets, Chem. Mater., 28, 1728, 10.1021/acs.chemmater.5b04646 Lauth, 2016, Photogeneration and mobility of charge carriers in atomically thin colloidal InSe nanosheets probed by ultrafast terahertz spectroscopy, J. Phys. Chem. Lett., 7, 4191, 10.1021/acs.jpclett.6b01835 Sucharitakul, 2015, Intrinsic electron mobility exceeding 103cm2/(Vs) in multilayer InSe FETs, Nano Lett., 15, 3815, 10.1021/acs.nanolett.5b00493 Feng, 2014, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface, Adv. Mater., 26, 6587, 10.1002/adma.201402427 Lei, 2014, Evolution of the electronic band structure and efficient photo-Detection in atomic layers of InSe, ACS Nano, 8, 1263, 10.1021/nn405036u Feng, 2015, Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response, J. Mater. Chem. C, 3, 7022, 10.1039/C5TC01208B Mudd, 2015, High broad-band photoresponsivity of mechanically formed InSe–Graphene van der waals heterostructures, Adv. Mater, 27, 3760, 10.1002/adma.201500889 Tamalampudi, 2014, High performance and Bendable few-Layered InSe photodetectors with broad spectral response, Nano Lett., 14, 2800, 10.1021/nl500817g Brotons-Gisbert, 2016, Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap, Nano Lett., 16, 3221, 10.1021/acs.nanolett.6b00689 Mudd, 2016, The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals, Sci. Rep., 6, 39619, 10.1038/srep39619 Zólyomi, 2014, Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations, Phys. Rev. B, 89, 205416, 10.1103/PhysRevB.89.205416 Chong, 2016, Ab initio study of carrier mobility of few-layer InSe, Appl. Phys. Express, 9, 035203, 10.7567/APEX.9.035203 Jijun, 2002, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, 13, 195, 10.1088/0957-4484/13/2/312 Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967 Zhou, 2011, Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors, Nanotechnology, 22, 385502, 10.1088/0957-4484/22/38/385502 Leenaerts, 2008, Adsorption of H2O NH3, CO,NO2, and NO on graphene: a first-principles study, Phys. Rev. B, 77, 125416, 10.1103/PhysRevB.77.125416 Jing, 2014, Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer, J. Mater. Chem. A, 2, 16892, 10.1039/C4TA03660C Bai, 2007, Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors, Carbon, 45, 2105, 10.1016/j.carbon.2007.05.019 Zhang, 2015, A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene, J. Phys. Chem. C, 119, 2871, 10.1021/jp5116564 Lembke, 2015, Single-Layer MoS2 electronics, Acc. Chem. Res., 48, 100, 10.1021/ar500274q Zhang, 2015, Synthesis and sensor applications of MoS2-based nanocomposites, Nanoscale, 7, 18364, 10.1039/C5NR06121K Kannan, 2015, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale, 7, 13293, 10.1039/C5NR03633J Hu, 2014, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Phys. Chem. Chem. Phys., 16, 6957, 10.1039/c3cp55250k Xia, 2014, A first-principles study of gas adsorption on germanene, Phys. Chem. Chem. Phys., 16, 22495, 10.1039/C4CP03292F Cai, 2015, Energetics charge transfer, and magnetism of small molecules physisorbed on phosphorene, J. Phys. Chem. C, 119, 3102, 10.1021/jp510863p Chen, 2016, Ab initio study of the adsorption of small molecules on stanene, J. Phys. Chem. C, 120, 13987, 10.1021/acs.jpcc.6b04481 Kou, 2014, Strain engineering of selective chemical adsorption on monolayer MoS2, Nanoscale, 6, 5156, 10.1039/C3NR06670C Yue, 2013, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-425 Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458 Zhou, 2015, Recent progress on the development of chemosensors for gases, Chem. Rev., 115, 7944, 10.1021/cr500567r Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Wu, 2001, Towards extending the applicability of density functional theory to weakly bound systems, J. Chem. Phys., 115, 8748, 10.1063/1.1412004 Ding, 2015, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: a computational study, J. Phys. Chem. C, 119, 27848, 10.1021/acs.jpcc.5b08946 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Zhao, 2014, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett., 595–596, 35, 10.1016/j.cplett.2014.01.043 Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010 Ou, 2015, Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing, ACS Nano, 9, 10313, 10.1021/acsnano.5b04343 Late, 2013, Sensing behavior of atomically thin-Layered MoS2 transistors, ACS Nano, 7, 4879, 10.1021/nn400026u Cho, 2015, Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep., 5, 8052, 10.1038/srep08052