First-principles study of the small molecule adsorption on the InSe monolayer
Tài liệu tham khảo
Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849
Kim, 2012, Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition, Nano Lett., 12, 161, 10.1021/nl203249a
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotech., 9, 372, 10.1038/nnano.2014.35
Vogt, 2012, Silicene compelling experimental evidence for graphenelike two-Dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501
Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 095002, 10.1088/1367-2630/16/9/095002
Ji, 2016, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun., 7, 13352, 10.1038/ncomms13352
Zhang, 2015, Atomically thin arsenene and antimonene: semimetal?Semiconductor and Indirect–Direct band-Gap transitions, Angew. Chem. Int. Ed., 54, 3112, 10.1002/anie.201411246
Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotech., 12, 21, 10.1038/nnano.2016.171
Lee, 2012, MoS2 nanosheet phototransistors with thickness-Modulated optical energy gap, Nano Lett., 12, 3695, 10.1021/nl301485q
Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109
Pumera, 2011, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 4, 668, 10.1039/C0EE00295J
Varghese, 2015, Two-Dimensional materials for sensing: graphene and beyond, Electron, 4, 651, 10.3390/electronics4030651
Yang, 2016, Two-dimensional layered nanomaterials for gas-sensing applications, Inorg. Chem. Front., 3, 433, 10.1039/C5QI00251F
Lightcap, 2013, Graphitic design prospects of graphene-Based nanocomposites for solar energy conversion, storage, and sensing, Acc. Chem. Res., 46, 2235, 10.1021/ar300248f
Xu, 2016, Synthesis, properties and applications of 2D layered MIIIXVI (M=Ga In; X=S, Se, Te) materials, Nanoscale, 8, 16802, 10.1039/C6NR05976G
Bandurin, 2017, High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe, Nat. Nanotech., 12, 223, 10.1038/nnano.2016.242
Debbichi, 2015, Two-Dimensional indium selenides compounds: an ab initio study, J. Phys. Chem. Lett., 6, 3098, 10.1021/acs.jpclett.5b01356
Mudd, 2013, Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement, Adv. Mater., 25, 5714, 10.1002/adma.201302616
Mudd, 2014, Quantum confined acceptors and donors in InSe nanosheets, Appl. Phys. Lett., 105, 221909, 10.1063/1.4903738
Feng, 2015, Gate modulation of threshold voltage instability in multilayer InSe field effect transistors, ACS Appl. Mater. Interfaces, 7, 26691, 10.1021/acsami.5b08635
Lauth, 2016, Solution-processed two-dimensional ultrathin InSe nanosheets, Chem. Mater., 28, 1728, 10.1021/acs.chemmater.5b04646
Lauth, 2016, Photogeneration and mobility of charge carriers in atomically thin colloidal InSe nanosheets probed by ultrafast terahertz spectroscopy, J. Phys. Chem. Lett., 7, 4191, 10.1021/acs.jpclett.6b01835
Sucharitakul, 2015, Intrinsic electron mobility exceeding 103cm2/(Vs) in multilayer InSe FETs, Nano Lett., 15, 3815, 10.1021/acs.nanolett.5b00493
Feng, 2014, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface, Adv. Mater., 26, 6587, 10.1002/adma.201402427
Lei, 2014, Evolution of the electronic band structure and efficient photo-Detection in atomic layers of InSe, ACS Nano, 8, 1263, 10.1021/nn405036u
Feng, 2015, Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response, J. Mater. Chem. C, 3, 7022, 10.1039/C5TC01208B
Mudd, 2015, High broad-band photoresponsivity of mechanically formed InSe–Graphene van der waals heterostructures, Adv. Mater, 27, 3760, 10.1002/adma.201500889
Tamalampudi, 2014, High performance and Bendable few-Layered InSe photodetectors with broad spectral response, Nano Lett., 14, 2800, 10.1021/nl500817g
Brotons-Gisbert, 2016, Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap, Nano Lett., 16, 3221, 10.1021/acs.nanolett.6b00689
Mudd, 2016, The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals, Sci. Rep., 6, 39619, 10.1038/srep39619
Zólyomi, 2014, Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations, Phys. Rev. B, 89, 205416, 10.1103/PhysRevB.89.205416
Chong, 2016, Ab initio study of carrier mobility of few-layer InSe, Appl. Phys. Express, 9, 035203, 10.7567/APEX.9.035203
Jijun, 2002, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology, 13, 195, 10.1088/0957-4484/13/2/312
Schedin, 2007, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6, 652, 10.1038/nmat1967
Zhou, 2011, Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors, Nanotechnology, 22, 385502, 10.1088/0957-4484/22/38/385502
Leenaerts, 2008, Adsorption of H2O NH3, CO,NO2, and NO on graphene: a first-principles study, Phys. Rev. B, 77, 125416, 10.1103/PhysRevB.77.125416
Jing, 2014, Tuning electronic and optical properties of MoS2 monolayer via molecular charge transfer, J. Mater. Chem. A, 2, 16892, 10.1039/C4TA03660C
Bai, 2007, Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors, Carbon, 45, 2105, 10.1016/j.carbon.2007.05.019
Zhang, 2015, A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene, J. Phys. Chem. C, 119, 2871, 10.1021/jp5116564
Lembke, 2015, Single-Layer MoS2 electronics, Acc. Chem. Res., 48, 100, 10.1021/ar500274q
Zhang, 2015, Synthesis and sensor applications of MoS2-based nanocomposites, Nanoscale, 7, 18364, 10.1039/C5NR06121K
Kannan, 2015, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale, 7, 13293, 10.1039/C5NR03633J
Hu, 2014, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Phys. Chem. Chem. Phys., 16, 6957, 10.1039/c3cp55250k
Xia, 2014, A first-principles study of gas adsorption on germanene, Phys. Chem. Chem. Phys., 16, 22495, 10.1039/C4CP03292F
Cai, 2015, Energetics charge transfer, and magnetism of small molecules physisorbed on phosphorene, J. Phys. Chem. C, 119, 3102, 10.1021/jp510863p
Chen, 2016, Ab initio study of the adsorption of small molecules on stanene, J. Phys. Chem. C, 120, 13987, 10.1021/acs.jpcc.6b04481
Kou, 2014, Strain engineering of selective chemical adsorption on monolayer MoS2, Nanoscale, 6, 5156, 10.1039/C3NR06670C
Yue, 2013, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-425
Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458
Zhou, 2015, Recent progress on the development of chemosensors for gases, Chem. Rev., 115, 7944, 10.1021/cr500567r
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Wu, 2001, Towards extending the applicability of density functional theory to weakly bound systems, J. Chem. Phys., 115, 8748, 10.1063/1.1412004
Ding, 2015, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: a computational study, J. Phys. Chem. C, 119, 27848, 10.1021/acs.jpcc.5b08946
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Zhao, 2014, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett., 595–596, 35, 10.1016/j.cplett.2014.01.043
Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010
Ou, 2015, Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing, ACS Nano, 9, 10313, 10.1021/acsnano.5b04343
Late, 2013, Sensing behavior of atomically thin-Layered MoS2 transistors, ACS Nano, 7, 4879, 10.1021/nn400026u
Cho, 2015, Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep., 5, 8052, 10.1038/srep08052