Detection of Atherosclerotic Inflammation by 68 Ga-DOTATATE PET Compared to [ 18 F]FDG PET Imaging

Journal of the American College of Cardiology - Tập 69 - Trang 1774-1791 - 2017
Jason M. Tarkin1, Francis R. Joshi2, Nicholas R. Evans3, Mohammed M. Chowdhury4, Nichola L. Figg1, Aarti V. Shah1, Lakshi T. Starks1, Abel Martin-Garrido1, Roido Manavaki5, Emma Yu1, Rhoda E. Kuc6, Luigi Grassi7, Roman Kreuzhuber7, Myrto A. Kostadima7, Mattia Frontini7, Peter J. Kirkpatrick8, Patrick A. Coughlin4, Deepa Gopalan5,9, Tim D. Fryer3, John R. Buscombe10
1Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
2Heart Center, Rigshospitalet, Copenhagen, Denmark
3Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
4Department of Vascular and Endovascular Surgery, Addenbrooke’s Hospital, Cambridge, United Kingdom
5Department of Radiology, University of Cambridge, Cambridge, United Kingdom
6Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
7Department of Hematology, University of Cambridge, and National Health Service Blood and Transport, Cambridge Biomedical Campus, Cambridge, United Kingdom
8Division of Neurosurgery, Addenbrooke’s Hospital, Cambridge, United Kingdom
9Department of Radiology, Hammersmith Hospital, London, United Kingdom
10Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom

Tài liệu tham khảo

Libby, 2016, Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum.”, J Am Coll Cardiol, 67, 1091, 10.1016/j.jacc.2015.12.048 Tarkin, 2014, PET imaging of inflammation in atherosclerosis, Nat Rev Cardiol, 11, 443, 10.1038/nrcardio.2014.80 Joshi, 2014, 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial, Lancet, 383, 705, 10.1016/S0140-6736(13)61754-7 Folco, 2011, Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-d-glucose positron emission tomography, J Am Coll Cardiol, 58, 603, 10.1016/j.jacc.2011.03.044 Dalm, 2003, Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells, Am J Physiol Endocrinol Metab, 285, E344, 10.1152/ajpendo.00048.2003 Li, 2013, Specific somatostatin receptor II expression in arterial plaque: (68)Ga-DOTATATE autoradiographic, immunohistochemical and flow cytometric studies in apoE-deficient mice, Atherosclerosis, 230, 33, 10.1016/j.atherosclerosis.2013.06.018 Rinne, 2015, Comparison of somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques, Mol Imaging Biol, 99 Rominger, 2010, In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors, J Nucl Med, 51, 193, 10.2967/jnumed.109.070672 Li, 2012, 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors, EJNMMI Res, 2, 52, 10.1186/2191-219X-2-52 Schatka, 2013, Peptide receptor-targeted radionuclide therapy alters inflammation in atherosclerotic plaques, J Am Coll Cardiol, 62, 2344, 10.1016/j.jacc.2013.08.1624 Reubi, 2000, Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use, Eur J Nucl Med, 27, 273, 10.1007/s002590050034 Blueprint Data Coordination Centre. Blueprint epinome. In: The International Human Epigenome Consortium. Available at: http://dcc.blueprint-epigenome.eu/#/md/data. Accessed May 17, 2016. Bucerius, 2016, Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis, Eur J Nucl Med Mol Imaging, 43, 780, 10.1007/s00259-015-3259-3 Motoyama, 2015, Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up, J Am Coll Cardiol, 66, 337, 10.1016/j.jacc.2015.05.069 Irkle, 2015, Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography, Nat Commun, 6, 7495, 10.1038/ncomms8495 Lichtenauer-Kaligis, 2004, Differential expression of somatostatin receptor subtypes in human peripheral blood mononuclear cell subsets, Eur J Endocrinol, 150, 565, 10.1530/eje.0.1500565 Joseph, 2016, Imaging atherosclerosis with positron emission tomography, Eur Heart J, 37, 2974, 10.1093/eurheartj/ehw147 Mojtahedi, 2014, Assessment of vulnerable atherosclerotic and fibrotic plaques in coronary arteries using (68)Ga-DOTATATE PET/CT, Am J Nucl Med Mol Imaging, 5, 65 Malmberg, 2015, 64Cu-DOTATATE for noninvasive assessment of atherosclerosis in large arteries and Its correlation with risk factors: head-to-head comparison with 68Ga-DOTATOC in 60 patients, J Nucl Med, 56, 1895, 10.2967/jnumed.115.161216 Pedersen, 2015, 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy, Arterioscl Thromb Vasc Biol, 35, 1696, 10.1161/ATVBAHA.114.305067 Finn, 2012, Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques, J Am Coll Cardiol, 59, 166, 10.1016/j.jacc.2011.10.852 Armani, 2006, Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages, J Leuk Biol, 81, 845, 10.1189/jlb.0606417 Rubeaux, 2016, Motion correction of 18F-NaF PET for imaging coronary atherosclerotic plaques, J Nucl Med, 57, 54, 10.2967/jnumed.115.162990