Propagation Dynamics for Time–Space Periodic and Partially Degenerate Reaction–Diffusion Systems with Time Delay
Springer Science and Business Media LLC - Trang 1-33
Tóm tắt
This paper is concerned with the propagation dynamics of a large class of time–space periodic and partially degenerate reaction–diffusion systems with time delay and monostable nonlinearity. In the cooperative case, based on the theory of principal eigenvalues for linear and partially degenerate systems with time delay, we establish the existence of spreading speeds and its coincidence with the minimal wave speed of time–space periodic traveling waves. In the noncooperative case, we introduce the definition of transition semi-waves and prove the existence and equality of the spreading speed and the minimal wave speed of transition semi-waves by constructing two auxiliary cooperative systems and using the comparison arguments. To overcome the difficulty arising from the lower regularity of solutions for partially degenerate systems, some new prior estimate is obtained for the existence of transition semi-waves.
Tài liệu tham khảo
citation_journal_title=Math. Ann.; citation_title=Generalized traveling waves for time-dependent reaction–diffusion systems; citation_author=B Ambrosio, A Ducrot, S Ruan; citation_volume=381; citation_publication_date=2021; citation_pages=1-27; citation_doi=10.1007/s00208-020-01998-3; citation_id=CR1
citation_journal_title=Commun. Pure Appl. Math.; citation_title=Front propagation in periodic excitable media; citation_author=H Berestycki, F Hamel; citation_volume=55; citation_publication_date=2002; citation_pages=949-1032; citation_doi=10.1002/cpa.3022; citation_id=CR2
citation_journal_title=Contemp. Math.; citation_title=Generalized travelling waves for reaction–diffusion equations; citation_author=H Berestycki, F Hamel; citation_volume=446; citation_publication_date=2007; citation_pages=101-124; citation_doi=10.1090/conm/446/08627; citation_id=CR3
citation_journal_title=Commun. Pure Appl. Math.; citation_title=Generalized transition waves and their properties; citation_author=H Berestycki, F Hamel; citation_volume=65; citation_publication_date=2012; citation_pages=592-648; citation_doi=10.1002/cpa.21389; citation_id=CR4
citation_journal_title=J. Math. Biol.; citation_title=Analysis of the periodically fragmented environment model I: species persistence; citation_author=H Berestycki, F Hamel, L Roques; citation_volume=51; citation_publication_date=2005; citation_pages=75-113; citation_doi=10.1007/s00285-004-0313-3; citation_id=CR5
citation_journal_title=J. Math. Pures Appl.; citation_title=Analysis of the periodically fragmented environment model: II. Biological invasions and pulsating traveling fronts; citation_author=H Berestycki, F Hamel, L Roques; citation_volume=84; citation_publication_date=2005; citation_pages=1101-1146; citation_doi=10.1016/j.matpur.2004.10.006; citation_id=CR6
citation_journal_title=Discrete Contin. Dyn. Syst.; citation_title=Traveling wave solutions for time periodic reaction–diffusion systems; citation_author=W-J Bo, G Lin, S Ruan; citation_volume=38; citation_publication_date=2018; citation_pages=4329-4351; citation_doi=10.3934/dcds.2018189; citation_id=CR7
citation_journal_title=J. Math. Bio.; citation_title=Convergence to equilibrium states for a reaction–diffusion system modeling the spatial spread of a class of bactetial and viral diseases; citation_author=V Capasso, L Maddalena; citation_volume=13; citation_publication_date=1981; citation_pages=173-184; citation_doi=10.1007/BF00275212; citation_id=CR8
citation_journal_title=Ann. Mat. Pura Appl.; citation_title=Generalized travelling fronts for non-autonomous Fisher-KPP equations with nonlocal diffusion; citation_author=A Ducrot, Z Jin; citation_volume=201; citation_publication_date=2022; citation_pages=1607-1638; citation_doi=10.1007/s10231-021-01173-8; citation_id=CR9
citation_journal_title=J. Differ. Equ.; citation_title=Monotone wave fronts for partially degenerate reaction–diffusion system; citation_author=J Fang, X-Q Zhao; citation_volume=21; citation_publication_date=2009; citation_pages=663-680; citation_doi=10.1007/s10884-009-9152-7; citation_id=CR10
citation_journal_title=SIAM J. Math. Anal.; citation_title=Traveling waves for monotone semiflows with weak compactness; citation_author=J Fang, X-Q Zhao; citation_volume=46; citation_publication_date=2014; citation_pages=3678-3704; citation_doi=10.1137/140953939; citation_id=CR11
citation_journal_title=J. Eur. Math. Soc.; citation_title=Bistable traveling waves for monotone semiflows with applications; citation_author=J Fang, X-Q Zhao; citation_volume=17; citation_publication_date=2015; citation_pages=2243-2288; citation_doi=10.4171/JEMS/556; citation_id=CR12
citation_journal_title=J. Funct. Anal.; citation_title=Traveling waves and spreading speeds for time–space periodic monotone systems; citation_author=J Fang, X Yu, X-Q Zhao; citation_volume=272; citation_publication_date=2017; citation_pages=4222-4262; citation_doi=10.1016/j.jfa.2017.02.028; citation_id=CR13
citation_journal_title=J. Differ. Equ.; citation_title=Spatial dynamics of a dengue transmission model in time–space periodic environment; citation_author=J Fang, X Lai, FB Wang; citation_volume=269; citation_publication_date=2020; citation_pages=149-175; citation_doi=10.1016/j.jde.2020.04.034; citation_id=CR14
citation_journal_title=J. Differ. Equ.; citation_title=Comparison principles for reaction–diffusion systems: irregular comparison functions and applications to questions of stability and speed of propagation of disturbances; citation_author=PC Fife, M Tang; citation_volume=40; citation_publication_date=1981; citation_pages=168-185; citation_doi=10.1016/0022-0396(81)90016-4; citation_id=CR15
citation_title=Partial Differential Equations of Parabolic Type; citation_publication_date=1964; citation_id=CR16; citation_author=A Friedman; citation_publisher=Prentice-Hall Inc
citation_journal_title=J. Eur. Math. Soc.; citation_title=Uniqueness and stability properties of monostable pulsating fronts; citation_author=F Hamel, L Roques; citation_volume=13; citation_publication_date=2011; citation_pages=345-390; citation_doi=10.4171/JEMS/256; citation_id=CR17
citation_title=Periodic-Parabolic Boundary Value Problems and Positivity; citation_publication_date=1991; citation_id=CR18; citation_author=P Hess; citation_publisher=Longman Scientific & Technical
citation_journal_title=SIAM J. Math. Anal.; citation_title=Propagation dynamics for time-periodic and partially degenerate reaction–diffusion systems; citation_author=M Huang, S-L Wu, X-Q Zhao; citation_volume=54; citation_publication_date=2022; citation_pages=1860-1897; citation_doi=10.1137/21M1397234; citation_id=CR19
citation_journal_title=J. Differ. Equ.; citation_title=The principal eigenvalue for partially degenerate and periodic reaction-diffusion systems with time delay; citation_author=M Huang, S-L Wu, X-Q Zhao; citation_volume=371; citation_publication_date=2023; citation_pages=396-449; citation_doi=10.1016/j.jde.2023.06.024; citation_id=CR20
citation_title=Perturbation Theory for Linear Operators; citation_publication_date=1995; citation_id=CR21; citation_author=T Kato; citation_publisher=Springer
Ladyzenskaja, O.A., Solonnikov, V.A., Uralćeva, N.N.: Linear and quasilinear equations of parabolic type. In: Translations Mathematical Monographs, vol. 23. American Mathematical Society, Providence, RI (1968)
citation_journal_title=J. Differ. Equ.; citation_title=Traveling wave solutions in partially degenerate cooperative reaction–diffusion systems; citation_author=B Li; citation_volume=252; citation_publication_date=2012; citation_pages=4842-4861; citation_doi=10.1016/j.jde.2012.01.018; citation_id=CR23
citation_journal_title=J. Differ. Equ.; citation_title=Spreading speeds and traveling waves for periodic evolution systems; citation_author=X Liang, Y Yi, X-Q Zhao; citation_volume=231; citation_publication_date=2006; citation_pages=57-77; citation_doi=10.1016/j.jde.2006.04.010; citation_id=CR24
citation_journal_title=Commun. Pure Appl. Math.; citation_title=Asymptotic speeds of spread and traveling waves for monotone semiflows with applications; citation_author=X Liang, X-Q Zhao; citation_volume=60; citation_publication_date=2007; citation_pages=1-40; citation_doi=10.1002/cpa.20154; citation_id=CR25
citation_journal_title=J. Funct. Anal.; citation_title=Spreading speeds and traveling waves for abstract monostable evolution systems; citation_author=X Liang, X-Q Zhao; citation_volume=259; citation_publication_date=2010; citation_pages=857-903; citation_doi=10.1016/j.jfa.2010.04.018; citation_id=CR26
citation_journal_title=SIAM J. Math. Anal.; citation_title=The principal eigenvalue for degenerate periodic reaction–diffusion systems; citation_author=X Liang, L Zhang, X-Q Zhao; citation_volume=49; citation_publication_date=2017; citation_pages=3603-3636; citation_doi=10.1137/16M1108832; citation_id=CR27
citation_journal_title=J. Differ. Equ.; citation_title=The principal eigenvalue for periodic nonlocal dispersal systems with time delay; citation_author=X Liang, L Zhang, X-Q Zhao; citation_volume=266; citation_publication_date=2019; citation_pages=2100-2124; citation_doi=10.1016/j.jde.2018.08.022; citation_id=CR28
citation_journal_title=Bull. Math. Biol.; citation_title=Effects of heterogeneity on spread and persistence in rivers; citation_author=F Lutscher, MA Lewis, E McCauley; citation_volume=68; citation_publication_date=2006; citation_pages=2129-2160; citation_doi=10.1007/s11538-006-9100-1; citation_id=CR29
citation_journal_title=Trans. Am. Math. Soc.; citation_title=Abstract functional differential equations and reaction–diffusion systems; citation_author=RH Martin, HL Smith; citation_volume=321; citation_publication_date=1990; citation_pages=1-44; citation_id=CR30
citation_journal_title=J. Math. Pures Appl.; citation_title=Traveling fronts in space–time periodic media; citation_author=G Nadin; citation_volume=92; citation_publication_date=2009; citation_pages=232-262; citation_doi=10.1016/j.matpur.2009.04.002; citation_id=CR31
citation_journal_title=J. Math. Pures Appl.; citation_title=Propagation phenomena for time heterogeneous KPP reaction–diffusion equations; citation_author=G Nadin, L Rossi; citation_volume=98; citation_publication_date=2012; citation_pages=633-653; citation_doi=10.1016/j.matpur.2012.05.005; citation_id=CR32
citation_journal_title=Anal. PDE; citation_title=Transition waves for Fisher-KPP equations with general time heterogeneous and space-periodic coefficients; citation_author=G Nadin, L Rossi; citation_volume=8; citation_publication_date=2015; citation_pages=1351-1377; citation_doi=10.2140/apde.2015.8.1351; citation_id=CR33
citation_journal_title=Arch. Ration. Mech. Anal.; citation_title=Generalized transition fronts for one-dimensional almost periodic Fisher-KPP equations; citation_author=G Nadin, L Rossi; citation_volume=223; citation_publication_date=2017; citation_pages=1239-1267; citation_doi=10.1007/s00205-016-1056-1; citation_id=CR34
citation_journal_title=Dyn. Partial Differ. Equ.; citation_title=Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds; citation_author=J Nolen, M Rudd, J Xin; citation_volume=2; citation_publication_date=2005; citation_pages=1-24; citation_doi=10.4310/DPDE.2005.v2.n1.a1; citation_id=CR35
citation_journal_title=Theor. Popul. Biol.; citation_title=Persistence, spread and the drift paradox; citation_author=E Pachepsky, F Lutscher, R Nisbet, M Lewis; citation_volume=67; citation_publication_date=2005; citation_pages=61-73; citation_doi=10.1016/j.tpb.2004.09.001; citation_id=CR36
citation_journal_title=Calc. Var. Partial Differ. Equ.; citation_title=Long time behaviors for a periodic Lotka–Volterra strong competition–diffusion system; citation_author=L Pang, S-L Wu, S Ruan; citation_volume=62; citation_publication_date=2023; citation_pages=99; citation_doi=10.1007/s00526-023-02436-3; citation_id=CR37
citation_journal_title=J. Dyn. Differ. Equ.; citation_title=Traveling waves in diffusive random media; citation_author=W Shen; citation_volume=16; citation_publication_date=2004; citation_pages=1011-1060; citation_doi=10.1007/s10884-004-7832-x; citation_id=CR38
citation_journal_title=J. Dyn. Differ. Equ.; citation_title=Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations; citation_author=W Shen; citation_volume=23; citation_publication_date=2011; citation_pages=1-44; citation_doi=10.1007/s10884-010-9200-3; citation_id=CR39
citation_journal_title=J. Reine Angew. Math.; citation_title=Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations; citation_author=HR Thieme; citation_volume=306; citation_publication_date=1979; citation_pages=94-121; citation_id=CR40
citation_journal_title=SIAM J. Appl. Math.; citation_title=Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity; citation_author=HR Thieme; citation_volume=70; citation_publication_date=2009; citation_pages=188-211; citation_doi=10.1137/080732870; citation_id=CR41
citation_journal_title=Discrete Contin. Dyn. Syst.; citation_title=Propagation dynamics of a nonlocal time-space periodic reaction–diffusion model with delay; citation_author=N Wang, Z-C Wang; citation_volume=42; citation_publication_date=2022; citation_pages=1599; citation_doi=10.3934/dcds.2021166; citation_id=CR42
citation_journal_title=J. Differ. Equ.; citation_title=Pulsating waves of a partially degenerate reaction–diffusion system in a periodic habitat; citation_author=X-S Wang, X-Q Zhao; citation_volume=259; citation_publication_date=2015; citation_pages=7238-7259; citation_doi=10.1016/j.jde.2015.08.019; citation_id=CR43
citation_journal_title=J. Math. Biol.; citation_title=On spreading speeds and traveling waves for growth and migration models in a periodic habitat; citation_author=HF Weinberger; citation_volume=45; citation_publication_date=2002; citation_pages=511-548; citation_doi=10.1007/s00285-002-0169-3; citation_id=CR44
citation_journal_title=J. Differ. Equ.; citation_title=Spreading speeds of a partially degenerate reaction–diffusion system in a periodic habitat; citation_author=C Wu, D Xiao, X-Q Zhao; citation_volume=255; citation_publication_date=2013; citation_pages=3983-4011; citation_doi=10.1016/j.jde.2013.07.058; citation_id=CR45
citation_journal_title=Adv. Nonlinear Anal.; citation_title=Periodic traveling fronts for partially degenerate reaction–diffusion systems with bistable and time-periodic nonlinearity; citation_author=S-L Wu, C-H Hsu; citation_volume=9; citation_publication_date=2019; citation_pages=923-957; citation_doi=10.1515/anona-2020-0033; citation_id=CR46
citation_journal_title=Trans. Am. Math. Soc.; citation_title=Existence of entire solutions for delayed monostable epidemic models; citation_author=S-L Wu, C-H Hsu; citation_volume=368; citation_publication_date=2016; citation_pages=6033-6062; citation_doi=10.1090/tran/6526; citation_id=CR47
citation_journal_title=J. Math. Pures Appl.; citation_title=Propagation dynamics in periodic predator–prey systems with nonlocal dispersal; citation_author=S-L Wu, L Pang, S Ruan; citation_volume=170; citation_publication_date=2023; citation_pages=57-95; citation_doi=10.1016/j.matpur.2022.12.003; citation_id=CR48
citation_journal_title=SIAM Rev.; citation_title=Front propagation in heterogeneous media; citation_author=J Xin; citation_volume=42; citation_publication_date=2000; citation_pages=161-230; citation_doi=10.1137/S0036144599364296; citation_id=CR49
citation_journal_title=J. Dyn. Differ. Equ.; citation_title=Time peridic traveling waves for a periodic and diffusive SIR epidemic model; citation_author=L Zhang, Z-C Wang, X-Q Zhao; citation_volume=30; citation_publication_date=2018; citation_pages=379-403; citation_doi=10.1007/s10884-016-9546-2; citation_id=CR50
citation_journal_title=Trans. Am. Math. Soc.; citation_title=Propagation dynamics of a periodic and delayed reaction–diffusion model without quasi-monotonicity; citation_author=L Zhang, Z-C Wang, X-Q Zhao; citation_volume=472; citation_publication_date=2019; citation_pages=1751-1782; citation_doi=10.1090/tran/7709; citation_id=CR51
citation_journal_title=J. Math. Pures Appl.; citation_title=Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion; citation_author=G Zhao, S Ruan; citation_volume=95; citation_publication_date=2011; citation_pages=627-671; citation_doi=10.1016/j.matpur.2010.11.005; citation_id=CR52
citation_title=Dynamical Systems in Population Biology; citation_publication_date=2017; citation_id=CR53; citation_author=X-Q Zhao; citation_publisher=Springer
citation_journal_title=J. Math. Pures Appl.; citation_title=Transition fronts in inhomogeneous Fisher-KPP reaction–diffusion equations; citation_author=A Zlatoš; citation_volume=98; citation_publication_date=2012; citation_pages=89-102; citation_doi=10.1016/j.matpur.2011.11.007; citation_id=CR54