Ash dieback, soil and deer browsing influence natural regeneration of European ash (Fraxinus excelsior L.)
Tài liệu tham khảo
Alfaro, 2014, The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change, For. Ecol. Manag., 333, 76, 10.1016/j.foreco.2014.04.006
Baral, 2014, Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe, IMA fungus, 5, 79, 10.5598/imafungus.2014.05.01.09
Bates, 2015, Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67, 1, 10.18637/jss.v067.i01
Beckage, 2005, Survival of tree seedlings across space and time: estimates from long-term count data, J. Ecol., 93, 1177, 10.1111/j.1365-2745.2005.01053.x
Bodziarczyk, 2017, Species composition, elevation, and former management type affect browsing pressure on forest regeneration in the Tatra National Park, For. Res. Pap., 78, 238
Box, 1979, Robustness in the strategy of scientific model building, 201
Brooks, 2017, glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, The R Journal, 9, 378, 10.32614/RJ-2017-066
Cech, 2008, Eschenkrankheit in Niederösterreich – neue Untersuchungsergebnisse, Forstsch. Akt., 43, 24
Čermák, 2006, Effects of game on the condition and development of natural regeneration in the National Nature Reserve Vrapač (Litovelské Pomoraví), J. For. Sci., 52, 316, 10.17221/4513-JFS
Chandelier, 2014, Detection and quantification of airborne inoculum of Hymenoscyphus pseudoalbidus using real-time PCR assays, Plant Pathol., 63, 1296, 10.1111/ppa.12218
Chumanová, 2019, Predicting ash dieback severity and environmental suitability for the disease in forest stands, Scand. J. For. Res., 34, 254, 10.1080/02827581.2019.1584638
Coker, 2019, Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic, Plants, People, Planet, 1, 48, 10.1002/ppp3.11
Core Development Team, 2020, R: a language and environment for statistical computing
Cross, 2016, Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus, New Phytol., 213, 1405, 10.1111/nph.14204
Czapiewska, 2019, Seasonal dynamics of floodplain forest understory – impacts of degradation, light availability and temperature on biomass and species composition, Forests, 10, 22, 10.3390/f10010022
Dech, 2008, Understorey plant community characteristics and natural hardwood regeneration under three partial harvest treatments applied in a northern red oak (Quercus rubra L.) stand in the Great Lakes-St. Lawrence forest region of Canada, For. Ecol. Manag., 256, 760, 10.1016/j.foreco.2008.05.033
Díaz, 2016, The global spectrum of plant form and function, Nature, 529, 167, 10.1038/nature16489
Diekmann, 1996, Ecological behaviour of deciduous hardwood trees in boreo-nemoral Sweden in relation to light and soil conditions, For. Ecol. Manag., 86, 1, 10.1016/S0378-1127(96)03795-4
Dietrich, 2016
Dobrowolska, 2011, A review of European ash (Fraxinus excelsior L.): implications for silviculture, Forestry, 84, 133, 10.1093/forestry/cpr001
Dufour, 2008, Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests, Ecology, 89, 205, 10.1890/06-1768.1
Dyderski, 2020, Impact of invasive tree species on natural regeneration species composition, diversity, and density, Forests, 11, 456, 10.3390/f11040456
Dyderski, 2018, Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests, Ann. For. Sci., 75, 91, 10.1007/s13595-018-0775-x
Emborg, 1998, Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark, For. Ecol. Manag., 106, 83, 10.1016/S0378-1127(97)00299-5
Enderle, 2017, Ash dieback in Germany: research on disease development, resistance and management options, 89
Erfmeier, 2019, Ash dieback and its impact in near-natural forest remnants - a plant community-based inventory, Front. Plant Sci., 10, 658, 10.3389/fpls.2019.00658
Fan, 2016, Applications of structural equation modeling (SEM) in ecological studies: an updated review, Ecol. Process., 5, 19, 10.1186/s13717-016-0063-3
Grosdidier, 2020, Landscape epidemiology of ash dieback, J. Ecol., 00, 1
Gross, 2014, Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback, Mol. Plant Pathol., 15, 5, 10.1111/mpp.12073
Gunderson, 2000, Ecological resilience in theory and application, Annu. Rev. Ecol. Syst., 31, 425, 10.1146/annurev.ecolsys.31.1.425
Gutierrez, 2004, Disturbance and regeneration dynamic of an old-growth North Patagonian rain forest in Chiloe Island, Chile, J. Ecol., 92, 598, 10.1111/j.0022-0477.2004.00891.x
Halmschlager, 2008, First record of the ash dieback pathogen Chalara fraxinea on Fraxinus excelsior in Austria, Plant Pathol., 57, 1177, 10.1111/j.1365-3059.2008.01924.x
Harmer, 2005, Survival and growth of tree seedlings in relation to changes in the ground flora during natural regeneration of an oak shelterwood, Forestry, 78, 21, 10.1093/forestry/cpi003
Hartig
Holling, 1973, Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 4, 1, 10.1146/annurev.es.04.110173.000245
Honkaniemi, 2020, Norway spruce at the trailing edge: the effect of landscape configuration and composition on climate resilience, Landsc. Ecol., 35, 591, 10.1007/s10980-019-00964-y
Iszkuło, 2014, Influence of initial light intensity and deer browsing on Taxus baccata saplings: a six years field study, Dendrobiology, 71, 93
IUSS Working Group WRB, 2015
Jagodziński, 2017, Do understorey or overstorey traits drive tree encroachment on a drained raised bog?, Plant Biol., 19, 571, 10.1111/plb.12569
Jahn, 1991, Temperate deciduous forests of Europe, Ecosyst. World, 7, 377
Janzen, 1970, Herbivores and the number of tree species in tropical forests, Am. Nat., 104, 501, 10.1086/282687
Keča, 2017, First report of the invasive ash dieback pathogen Hymenoscyphus fraxineus on Fraxinus excelsior and F. angustifolia in Serbia, Balt. For., 23, 56
Keßler, 2012, Dieback of ash (Fraxinus excelsior and Fraxinus angustifolia) in Eastern Austria: disease development on monitoring plots from 2007 to 2010, J. Agric. Ext. Rural Develop., 4, 223
Kirisits, 2010, Chalara fraxinea associated with dieback of narrow-leafed ash (Fraxinus angustifolia), Plant Pathol., 59, 411, 10.1111/j.1365-3059.2009.02162.x
Kirisits, 2011, Österreichweites Eschentriebsterben, Forstzeitung, 122, 36
Kleyer, 2008, The LEDA Traitbase: a database of life-history traits of the Northwest European flora, J. Ecol., 96, 1266, 10.1111/j.1365-2745.2008.01430.x
Kolb, 1990, Growth response of northern red-oak and yellow-poplar seedlings to light, soil moisture and nutrients in relation to ecological strategy, For. Ecol. Manag., 38, 65, 10.1016/0378-1127(90)90086-Q
Koltay, 2012, Chalara fraxinea incidence in Hungarian ash (Fraxinus excelsior) forest, J. Agric. Ext. Rural Develop., 4, 236, 10.5897/JAERD12.058
Kowalski, 2006, Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland, For. Pathol., 36, 264, 10.1111/j.1439-0329.2006.00453.x
Kowalski, 2010, Morphological variation in colonies of Chalara fraxinea isolated from ash (Fraxinus excelsior L.) stems with symptoms of dieback and effects of temperature on colony growth and structure, Acta Agrobot., 63, 99, 10.5586/aa.2010.012
Kowalski, 2010, Symptomy chorobowe i grzyby na zamierających jesionach (Fraxinus excelsior L.) w drzewostanach Nadleśnictwa Staszów, For. Res. Pap., 71, 357
Kowalski, 2009, Pathogenicity of Chalara fraxinea, For. Pathol., 39, 1, 10.1111/j.1439-0329.2008.00565.x
Kowalski, 2005, Badania nad zamieraniem jesionu (Fraxinus excelsior L.) w drzewostanach Nadleśnictwa Włoszczowa, Acta Agrobot., 58, 429, 10.5586/aa.2005.068
Kunstler, 2016, Plant functional traits have globally consistent effects on competition, Nature, 529, 204, 10.1038/nature16476
Lityński, 1976
Łubek, 2019, Impact of Fraxinus excelsior dieback on biota of ash-associated lichen epiphytes at the landscape and community level, Biodivers. Conserv., 29, 431, 10.1007/s10531-019-01890-w
Lüdecke, 2018, ggeffects: tidy data frames of marginal effects from regression models, J. Stat. Soft., 3, 772
Lygis, 2014, Forest self-regeneration following clear-felling of dieback-affected Fraxinus Excelsior: focus on ash, Eur. J. For. Res., 133, 501, 10.1007/s10342-014-0780-z
Marçais, 2017, Estimation of ash mortality induced by Hymenoscyphus fraxineus in France and Belgium, Balt. For., 23, 159
Mitchell, 2014, Ash dieback in the UK: a review of the ecological and conservation implications and potential management options, Biol. Conserv., 175, 95, 10.1016/j.biocon.2014.04.019
Mitchell, 2016, Potential impacts of the loss of Fraxinus excelsior (Oleaceae) due to ash dieback on woodland vegetation in Great Britain, New J. Bot., 6, 2, 10.1080/20423489.2016.1171454
Modrý, 2004, Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability, For. Ecol. Manag., 188, 185, 10.1016/j.foreco.2003.07.029
Müller, 1990
Muñoz, 2016, Rising out of the ashes: additive genetic variation for crown and collar resistance to Hymenoscyphus fraxineus in Fraxinus excelsior, Phytopathology, 106, 1535, 10.1094/PHYTO-11-15-0284-R
Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. Chapter 34, 1001-1006. In: J.M. Bigham et al. (Ed.) Soil Science Society of America and American Society of Agronomy. Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series no. 5. Madison, USA.
Niinemets, 2006, Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs, Ecol. Monogr., 76, 521, 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Pacala, 1994, Sapling growth as a function of resources in a north temperate forest, Can. J. For. Res., 24, 2172, 10.1139/x94-280
Pautasso, 2013, European ash (Fraxinus excelsior) dieback – a conservation biology challenge, Biol. Conserv., 158, 37, 10.1016/j.biocon.2012.08.026
Pierce, 2013, Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants, Funct. Ecol., 27, 1002, 10.1111/1365-2435.12095
Prober, 2015, Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration, Front. Ecol. Evol., 23
Pušpure, 2017, Natural regeneration of common ash in young stands in Latvia, Balt. For., 23, 209
Robakowski, 2011, Competition between sessile oak (Quercus petraea) and black cherry (Padus serotina): dynamics of seedlings growth, Pol. J. Ecol., 59, 297
Şenlikci, 2015, 24
Smith, 1997
Stagne, 1998, Effects of deer browsing, fabric mats, and tree shelters on Quercus rubra seedlings, Restor. Ecol., 6, 29, 10.1046/j.1526-100x.1998.00614.x
Szwagrzyk, 2008, Is natural regeneration of forest stands a continuous process? A case study of an old-growth forest of the Western Carpathians, Pol. J. Ecol., 56, 623
Thompson, I., Mackey, B., McNulty, S., Mosseler, A., 2009. Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series, 43, 67.
Timmermann, 2011, Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway, Bull. OEPP, 41, 14, 10.1111/j.1365-2338.2010.02429.x
Timmermann, 2017, Progression of ash dieback in Norway related to tree age, disease history and regional aspects, Balt. For., 23, 150
Turczański, 2020, Soil pH and organic matter content affects European ash (Fraxinus excelsior L.) crown defoliation and its impact on understory vegetation, Forests, 11, 22, 10.3390/f11010022
Turczański, 2020, Kondycja jesionu wyniosłego (Fraxinus excelsior L.) w zależności od warunków wilgotnościowych wybranych siedlisk leśnych, Sylwan, 164, 133
Wardle, 1959, The regeneration of Fraxinus in woods with a layer of Mercurialis perennis, J. Ecol., 47, 483, 10.2307/2257377
Wardle, 1961, Biological flora of the British Isles: Fraxinus excelsior L, J. Ecol., 49, 739, 10.2307/2257236