Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface

Helena M. Heidemann1, Marta E.R. Dotto2, João B. Laurindo1, Bruno A.M. Carciofi1, Cristiane Costa1
1Federal University of Santa Catarina, Department of Chemical and Food Engineering, CEP 88040-900 Florianópolis, SC, Brazil
2Federal University of Santa Catarina, Department of Physics, CEP 88040-970 Florianópolis, SC, Brazil

Tài liệu tham khảo

Moore, 2008, Synthetic polymers in the marine environment: a rapidly increasing, long-term threat, Environ. Res., 108, 131, 10.1016/j.envres.2008.07.025 Lambert, 2017, Environmental performance of bio-based and biodegradable plastics: the road ahead, Chem. Soc. Rev., 46, 6855, 10.1039/C7CS00149E Franchetti, 2006, Polímeros biodegradáveis - Uma solução parcial para diminuir a quantidade dos resíduos plásticos, Quim. Nova, 29, 811, 10.1590/S0100-40422006000400031 Oliveira de Moraes, 2015, Conductive drying of starch-fiber films prepared by tape casting: drying rates and film properties, LWT - Food Sci. Technol., 64, 356, 10.1016/j.lwt.2015.05.038 Scheibe, 2014, Production and characterization of bags from biocomposite films of starch-vegetal fibers prepared by tape casting, J. Food Process Eng., 37, 482, 10.1111/jfpe.12105 De Moraes, 2013, Scale-up of the production of cassava starch based films using tape-casting, J. Food Eng., 119, 800, 10.1016/j.jfoodeng.2013.07.009 Müller, 2012, Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing, Carbohydr. Polym., 89, 504, 10.1016/j.carbpol.2012.03.035 De Oliveira Romera, 2012, Use of transient and steady-state methods and AFM technique for investigating the water transfer through starch-based films, J. Food Eng., 109, 62, 10.1016/j.jfoodeng.2011.09.033 Müller, 2009, Open air excavations at Deriner dam, Int. Water Power Dam. Constr., 61, 18 Fazeli, 2019, Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification, Compos. B: Eng., 163, 207, 10.1016/j.compositesb.2018.11.048 Ortega-Toro, 2015, Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging, Food Packag, Shelf Life, 5, 10, 10.1016/j.fpsl.2015.04.001 Ortega-Toro, 2016, Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone), Carbohydr. Polym., 147, 16, 10.1016/j.carbpol.2016.03.070 Hassan, 2019, Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA, Cellulose, 26, 4463, 10.1007/s10570-019-02393-1 Ortega-toro, 2015, Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding, Carbohydr. Polym., 127, 282, 10.1016/j.carbpol.2015.03.080 Sun, 2016, Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer, Carbohydr. Polym., 139, 28, 10.1016/j.carbpol.2015.12.002 Collazo-Bigliardi, 2019, Using grafted poly(ε-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends, React. Funct. Polym., 142, 25, 10.1016/j.reactfunctpolym.2019.05.013 Carmona, 2015, Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA), J. Polym. Environ., 23, 83, 10.1007/s10924-014-0666-7 Li, 2016, Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates, Carbohydr. Polym., 142, 250, 10.1016/j.carbpol.2016.01.031 Misra, 2011, Nonthermal plasma inactivation of food-borne pathogens, Food Eng. Rev., 3, 159, 10.1007/s12393-011-9041-9 Laput, 2019, Low-temperature plasma treatment of polylactic acid and PLA/HA composite material, J. Mater. Sci., 54, 11726, 10.1007/s10853-019-03693-4 Li, 2019, Effect of glow discharge plasma on surface modification of chitosan film, Int. J. Biol. Macromol., 138, 340, 10.1016/j.ijbiomac.2019.07.039 Prakash, 2017, Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection, Sci. Rep., 7, 1, 10.1038/s41598-017-17455-2 Francke, 2003, Design and operating characteristics of a simple and reliable DBD reactor for use with atmospheric air, Plasma Chem. Plasma Process., 23, 47, 10.1023/A:1022412718224 Penetrante, 1996, Pulsed corona and dielectric-barrier discharge processing of NO in N2, Appl. Phys. Lett., 68, 3719, 10.1063/1.115984 Smith, 2017, Mechanism of ampicillin degradation by non-thermal plasma treatment with FE-DBD, Plasma, 1, 1, 10.3390/plasma1010001 De Geyter, 2010, Plasma modification of polylactic acid in a medium pressure DBD, Surf. Coatings Technol., 204, 3272, 10.1016/j.surfcoat.2010.03.037 Arolkar, 2015, The study of air-plasma treatment on corn starch/poly(??-caprolactone) films, Polym. Degrad. Stab., 120, 262, 10.1016/j.polymdegradstab.2015.07.016 Rezaei, 2017, Surface modification of PET film via a large area atmospheric pressure plasma: an optical analysis of the plasma and surface characterization of the polymer film, Surf. Coat. Technol., 309, 371, 10.1016/j.surfcoat.2016.11.072 Yáñez-Pacios, 2017, Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet, Int. J. Adhes. Adhes., 77, 204, 10.1016/j.ijadhadh.2017.06.001 Benetto, 2015, Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: a screening life cycle assessment, J. Clean. Prod., 87, 953, 10.1016/j.jclepro.2014.10.056 Belibi, 2014, A comparative study of some properties of cassava and tree cassava starch films, Phys. Procedia, 55, 220, 10.1016/j.phpro.2014.07.032 Pankaj, 2014, Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma, Innov. Food Sci. Emerg. Technol., 21, 107, 10.1016/j.ifset.2013.10.007 2015 2018 2017 2000 Yildirim, 2008, 58 Uk, 2009, Contribution of power on cell adhesion using atmospheric dielectric barrier discharge (DBD) plasma system, Curr. Appl. Phys., 9, 219, 10.1016/j.cap.2008.01.014 Teraoka, 2006, Surface modification of poly (L-lactide) by atmospheric pressure plasma treatment and cell response, Dent. Mater. J., 25, 560, 10.4012/dmj.25.560 Ren, 2017, Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics, Appl. Surf. Sci., 426, 612, 10.1016/j.apsusc.2017.07.211 Massines, 2001, The role of dielectric barrier discharge atmosphere and physics on polypropylene, Plasmas Polym., 6, 35, 10.1023/A:1011365306501 Yang, 2009, Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma, Appl. Surf. Sci., 255, 4446, 10.1016/j.apsusc.2008.11.048 Khorasani, 2008, Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion, Radiat. Phys. Chem., 77, 280, 10.1016/j.radphyschem.2007.05.013 Kolská, 2014, Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility, Polym. Degrad. Stab., 101, 1, 10.1016/j.polymdegradstab.2014.01.024 Wiacek, 2017, Interfacial properties of PET and PET/starch polymers developed by air plasma treatment, Colloids Surf. A Physicochem. Eng. Aspects, 532, 323, 10.1016/j.colsurfa.2017.04.074 Jurak, 2017, Chitosan/phospholipid coated polyethylene therephthalate PET polymer surfaces activated by air plasma, Colloids Surf. A Physicochem. Eng. Aspects, 532, 155, 10.1016/j.colsurfa.2017.05.061