Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface
Tài liệu tham khảo
Moore, 2008, Synthetic polymers in the marine environment: a rapidly increasing, long-term threat, Environ. Res., 108, 131, 10.1016/j.envres.2008.07.025
Lambert, 2017, Environmental performance of bio-based and biodegradable plastics: the road ahead, Chem. Soc. Rev., 46, 6855, 10.1039/C7CS00149E
Franchetti, 2006, Polímeros biodegradáveis - Uma solução parcial para diminuir a quantidade dos resíduos plásticos, Quim. Nova, 29, 811, 10.1590/S0100-40422006000400031
Oliveira de Moraes, 2015, Conductive drying of starch-fiber films prepared by tape casting: drying rates and film properties, LWT - Food Sci. Technol., 64, 356, 10.1016/j.lwt.2015.05.038
Scheibe, 2014, Production and characterization of bags from biocomposite films of starch-vegetal fibers prepared by tape casting, J. Food Process Eng., 37, 482, 10.1111/jfpe.12105
De Moraes, 2013, Scale-up of the production of cassava starch based films using tape-casting, J. Food Eng., 119, 800, 10.1016/j.jfoodeng.2013.07.009
Müller, 2012, Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing, Carbohydr. Polym., 89, 504, 10.1016/j.carbpol.2012.03.035
De Oliveira Romera, 2012, Use of transient and steady-state methods and AFM technique for investigating the water transfer through starch-based films, J. Food Eng., 109, 62, 10.1016/j.jfoodeng.2011.09.033
Müller, 2009, Open air excavations at Deriner dam, Int. Water Power Dam. Constr., 61, 18
Fazeli, 2019, Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification, Compos. B: Eng., 163, 207, 10.1016/j.compositesb.2018.11.048
Ortega-Toro, 2015, Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging, Food Packag, Shelf Life, 5, 10, 10.1016/j.fpsl.2015.04.001
Ortega-Toro, 2016, Enhancement of interfacial adhesion between starch and grafted poly(ε-caprolactone), Carbohydr. Polym., 147, 16, 10.1016/j.carbpol.2016.03.070
Hassan, 2019, Thermo-mechanical, morphological and water absorption properties of thermoplastic starch/cellulose composite foams reinforced with PLA, Cellulose, 26, 4463, 10.1007/s10570-019-02393-1
Ortega-toro, 2015, Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding, Carbohydr. Polym., 127, 282, 10.1016/j.carbpol.2015.03.080
Sun, 2016, Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer, Carbohydr. Polym., 139, 28, 10.1016/j.carbpol.2015.12.002
Collazo-Bigliardi, 2019, Using grafted poly(ε-caprolactone) for the compatibilization of thermoplastic starch-polylactic acid blends, React. Funct. Polym., 142, 25, 10.1016/j.reactfunctpolym.2019.05.013
Carmona, 2015, Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA), J. Polym. Environ., 23, 83, 10.1007/s10924-014-0666-7
Li, 2016, Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates, Carbohydr. Polym., 142, 250, 10.1016/j.carbpol.2016.01.031
Misra, 2011, Nonthermal plasma inactivation of food-borne pathogens, Food Eng. Rev., 3, 159, 10.1007/s12393-011-9041-9
Laput, 2019, Low-temperature plasma treatment of polylactic acid and PLA/HA composite material, J. Mater. Sci., 54, 11726, 10.1007/s10853-019-03693-4
Li, 2019, Effect of glow discharge plasma on surface modification of chitosan film, Int. J. Biol. Macromol., 138, 340, 10.1016/j.ijbiomac.2019.07.039
Prakash, 2017, Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection, Sci. Rep., 7, 1, 10.1038/s41598-017-17455-2
Francke, 2003, Design and operating characteristics of a simple and reliable DBD reactor for use with atmospheric air, Plasma Chem. Plasma Process., 23, 47, 10.1023/A:1022412718224
Penetrante, 1996, Pulsed corona and dielectric-barrier discharge processing of NO in N2, Appl. Phys. Lett., 68, 3719, 10.1063/1.115984
Smith, 2017, Mechanism of ampicillin degradation by non-thermal plasma treatment with FE-DBD, Plasma, 1, 1, 10.3390/plasma1010001
De Geyter, 2010, Plasma modification of polylactic acid in a medium pressure DBD, Surf. Coatings Technol., 204, 3272, 10.1016/j.surfcoat.2010.03.037
Arolkar, 2015, The study of air-plasma treatment on corn starch/poly(??-caprolactone) films, Polym. Degrad. Stab., 120, 262, 10.1016/j.polymdegradstab.2015.07.016
Rezaei, 2017, Surface modification of PET film via a large area atmospheric pressure plasma: an optical analysis of the plasma and surface characterization of the polymer film, Surf. Coat. Technol., 309, 371, 10.1016/j.surfcoat.2016.11.072
Yáñez-Pacios, 2017, Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet, Int. J. Adhes. Adhes., 77, 204, 10.1016/j.ijadhadh.2017.06.001
Benetto, 2015, Using atmospheric plasma to design multilayer film from polylactic acid and thermoplastic starch: a screening life cycle assessment, J. Clean. Prod., 87, 953, 10.1016/j.jclepro.2014.10.056
Belibi, 2014, A comparative study of some properties of cassava and tree cassava starch films, Phys. Procedia, 55, 220, 10.1016/j.phpro.2014.07.032
Pankaj, 2014, Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma, Innov. Food Sci. Emerg. Technol., 21, 107, 10.1016/j.ifset.2013.10.007
2015
2018
2017
2000
Yildirim, 2008, 58
Uk, 2009, Contribution of power on cell adhesion using atmospheric dielectric barrier discharge (DBD) plasma system, Curr. Appl. Phys., 9, 219, 10.1016/j.cap.2008.01.014
Teraoka, 2006, Surface modification of poly (L-lactide) by atmospheric pressure plasma treatment and cell response, Dent. Mater. J., 25, 560, 10.4012/dmj.25.560
Ren, 2017, Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics, Appl. Surf. Sci., 426, 612, 10.1016/j.apsusc.2017.07.211
Massines, 2001, The role of dielectric barrier discharge atmosphere and physics on polypropylene, Plasmas Polym., 6, 35, 10.1023/A:1011365306501
Yang, 2009, Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma, Appl. Surf. Sci., 255, 4446, 10.1016/j.apsusc.2008.11.048
Khorasani, 2008, Plasma surface modification of poly (l-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion, Radiat. Phys. Chem., 77, 280, 10.1016/j.radphyschem.2007.05.013
Kolská, 2014, Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility, Polym. Degrad. Stab., 101, 1, 10.1016/j.polymdegradstab.2014.01.024
Wiacek, 2017, Interfacial properties of PET and PET/starch polymers developed by air plasma treatment, Colloids Surf. A Physicochem. Eng. Aspects, 532, 323, 10.1016/j.colsurfa.2017.04.074
Jurak, 2017, Chitosan/phospholipid coated polyethylene therephthalate PET polymer surfaces activated by air plasma, Colloids Surf. A Physicochem. Eng. Aspects, 532, 155, 10.1016/j.colsurfa.2017.05.061