Characterizing Diagnostic Search Patterns in Digital Breast Pathology: Scanners and Drillers

Journal of Digital Imaging - Tập 31 - Trang 32-41 - 2017
Ezgi Mercan1, Linda G. Shapiro1, Tad T. Brunyé2, Donald L. Weaver3, Joann G. Elmore4
1Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
2Department of Psychology, Tufts University, Medford, USA
3Department of Pathology and UVM Cancer Center, University of Vermont, Burlington, USA
4Department of Medicine, University of Washington School of Medicine, Seattle, USA

Tóm tắt

Following a baseline demographic survey, 87 pathologists interpreted 240 digital whole slide images of breast biopsy specimens representing a range of diagnostic categories from benign to atypia, ductal carcinoma in situ, and invasive cancer. A web-based viewer recorded pathologists’ behaviors while interpreting a subset of 60 randomly selected and randomly ordered slides. To characterize diagnostic search patterns, we used the viewport location, time stamp, and zoom level data to calculate four variables: average zoom level, maximum zoom level, zoom level variance, and scanning percentage. Two distinct search strategies were confirmed: scanning is characterized by panning at a constant zoom level, while drilling involves zooming in and out at various locations. Statistical analysis was applied to examine the associations of different visual interpretive strategies with pathologist characteristics, diagnostic accuracy, and efficiency. We found that females scanned more than males, and age was positively correlated with scanning percentage, while the facility size was negatively correlated. Throughout 60 cases, the scanning percentage and total interpretation time per slide decreased, and these two variables were positively correlated. The scanning percentage was not predictive of diagnostic accuracy. Increasing average zoom level, maximum zoom level, and zoom variance were correlated with over-interpretation.

Tài liệu tham khảo

Irshad H, Veillard A, Roux L et al.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng 7:97–114, 2014. doi: 10.1109/RBME.2013.2295804 Yin F, Han G, Bui MM et al.: Educational value of digital whole slides accompanying published online pathology journal articles: a multi-institutional study. Arch Pathol Lab Med 140(7):694–697, 2016. doi: 10.5858/arpa.2015-0366-OA Saco A, Bombi JA, Garcia A et al.: Current status of whole-slide imaging in education. Pathobiology 83(2-3):79–88, 2016. doi: 10.1159/000442391 Kumar RK, Freeman B, Velan GM et al.: Integrating histology and histopathology teaching in practical classes using virtual slides. Anat Rec - Part B New Anat 289(4):128–133, 2006. doi: 10.1002/ar.b.20105 Bruch LA, De Young BR, Kreiter CD et al.: Competency assessment of residents in surgical pathology using virtual microscopy. Hum Pathol 40(8):1122–1128, 2009. doi: 10.1016/j.humpath.2009.04.009 Gutman D, Cobb J, Somanna D: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data. Med Informatics 20(6):1091–1098, 2013. doi: 10.1136/amiajnl-2012-001469 Al-Janabi S, Huisman A, Van Diest PJ: Digital pathology: current status and future perspectives. Histopathology. 61(1):1–9, 2012. doi: 10.1111/j.1365-2559.2011.03814.x Pantanowitz L, Valenstein PN, Evans AJ et al.: Review of the current state of whole slide imaging in pathology. J Pathol Inform 2:36, 2011. doi: 10.4103/2153-3539.83746 Brunyé TT, Carney PA, Allison KH et al.: Eye movements as an index of pathologist visual expertise: a pilot study. PLoS One 9(8):e103447, 2014. doi: 10.1371/journal.pone.0103447 Bahlmann C, Patel A, Johnson J et al.: Automated detection of diagnostically relevant regions in H&E stained digital pathology slides. Proc. SPIE, Med. Imaging 8315:831504, 2012. doi: 10.1117/12.912484 Drew T, Vo ML, Olwal A et al.: Scanners and drillers: characterizing expert visual search through volumetric images. J Vis 13(10). pii: 3., 2013. doi: 10.1167/13.10.3 Tourassi G, Voisin S, Paquit V et al.: Investigating the link between radiologists’ gaze, diagnostic decision, and image content. J Am Med Inform Assoc 20(6):1067–1075, 2013. doi: 10.1136/amiajnl-2012-001503 Krupinski EA, Graham AR, Weinstein RS: Characterizing the development of visual search expertise in pathology residents viewing whole slide images. Hum Pathol 44(3):357–64, 2013. doi: 10.1016/j.humpath.2012.05.024 Crowley RS, Naus GJ, Stewart J et al.: Development of visual diagnostic expertise in pathology: an information-processing study. J Am Med Informatics Assoc 10(1): 39–51, 2003. doi: 10.1197/jamia.M1123 Krupinski EA, Weinstein RS: Changes in visual search patterns of pathology residents as they gain experience. In: Proceedings of SPIE:79660P, 2011. doi: 10.1117/12.877735 Velez N, Jukic D, Ho J: Evaluation of 2 whole-slide imaging applications in dermatopathology. Hum Pathol 39 (9), 1341–1349, 2008. doi: 10.1016/j.humpath.2008.01.006 Wen G, Drew T, Wolfe JM et al.: Computational assessment of visual search strategies in volumetric medical images strategies in volumetric medical images. J Med Imaging 3(1):015501, 2016. doi: 10.1117/1.JMI.3.1.015501 Elmore JG, Longton GM, Carney PA et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11):1122–1132., 2015. doi: 10.1001/jama.2015.1405 Oster NV, Carney PA, Allison KH et al.: Development of a diagnostic test set to assess agreement in breast pathology: practical application of the Guidelines for Reporting Reliability and Agreement Studies (GRRAS). BMC Womens Health 13:3, 2013. doi: 10.1186/1472-6874-13-3 Nagarkar DB, Mercan E, Weaver DL et al.: Region of interest identification and diagnostic agreement in breast pathology. Mod. Pathol. 29(9):1004–1011, 2016. doi: 10.1038/modpathol.2016.85 Elmore J, Longton G, Pepe M et al.: A randomized study comparing digital imaging to traditional glass slide microscopy for breast biopsy and cancer diagnosis. J Pathol Inform 8:12, 2017. doi: 10.4103/2153-3539.201920 Elias SM, Smith WL, Barney CE: Age as a moderator of attitude towards technology in the workplace: work motivation and overall job satisfaction. Behav Inf Technol 31(5):453–467, 2012. doi: 10.1080/0144929X.2010.513419 Newton T, Slade P, Butler NM et al.: Personality and performance on a simple visual search task. Pers Individ Dif 13(3):381–382, 1992. doi: 10.1016/0191-8869(92)90119-A Wu S, Zhong S, Liu Y. Deep residual learning for image steganalysis. Multimed Tools Appl, Published Online First: 15 February 2017. doi:10.1007/s11042-017-4440-4 Miglioretti DL, Gard CC, Carney PA et al.: When radiologists perform best: the learning curve in screening mammogram interpretation. Radiology 253(3):632–640, 2009. doi: 10.1148/radiol.2533090070 Chun MM, Wolfe JM: Just say no: how are visual searches terminated when there is no target present? Cogn Psychol 30(1):39–78, 1996. doi: 10.1006/cogp.1996.0002 Miyake A, Friedman NP, Emerson MJ et al.: The unity and diversity of executive functions and their contributions to complex ‘frontal lobe’ tasks: a latent variable analysis. Cogn Psychol 41(1):49–100, 2000. doi: 10.1006/cogp.1999.0734 Turner ML, Engle RW: Is working memory capacity task dependent? J Mem Lang 28(2):127–154, 1989. doi: 10.1016/0749-596X(89)90040-5 Treanor D, Lim CH, Magee D et al.: Tracking with virtual slides: a tool to study diagnostic error in histopathology. Histopathology 55(1):37–45, 2009. doi: 10.1111/j.1365-2559.2009.03325.x Mello-thoms C, Mello CAB, Medvedeva O et al.: Perceptual analysis of the reading of dermatopathology virtual slides by pathology residents. Arch Pathol Lab Med. 136(5):551–562, 2012. doi: 10.5858/arpa.2010-0697-OA Krupinski EA, Tillack AA, Richter L et al.: Eye-movement study and human performance using telepathology virtual slides. Implications for medical education and differences with experience. Hum Pathol 37(12):1543–1556, 2006. doi: 10.1016/j.humpath.2006.08.024