Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy

Cellular Immunology - Tập 360 - Trang 104257 - 2021
Julián A. Chamucero-Millares1,2, David A. Bernal-Estévez2, Carlos A. Parra-López1
1Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, South-America, Colombia
2Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Calle 44 #58-05, Bogotá, South-America, Colombia

Tài liệu tham khảo

Eisenbarth, 2019, Dendritic cell subsets in T cell programming: location dictates function, Nat. Rev. Immunol., 19, 89, 10.1038/s41577-018-0088-1 Patente, 2019, Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy, Front. Immunol., 9, 3176, 10.3389/fimmu.2018.03176 Collin, 2018, Human dendritic cell subsets: an update, Immunology, 154, 3, 10.1111/imm.12888 Ballen, 2016, Infection Rates among Acute Leukemia Patients Receiving Alternative Donor Hematopoietic Cell Transplantation, Biol. Blood Marrow Transplantat., 22, 1636, 10.1016/j.bbmt.2016.06.012 Mehta, 2016, Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection, Virulence, 7, 901, 10.1080/21505594.2016.1208866 Rosenberg, 2008, Adoptive cell transfer: a clinical path to effective cancer immunotherapy, Nat. Rev. Cancer, 8, 299, 10.1038/nrc2355 Restifo, 2012, Adoptive immunotherapy for cancer: harnessing the T cell response, Nat. Rev. Immunol., 12, 269, 10.1038/nri3191 Rosenberg, 2015, Adoptive cell transfer as personalized immunotherapy for human cancer, Science, 348, 62, 10.1126/science.aaa4967 Gattinoni, 2011, A human memory T cell subset with stem cell–like properties, Nat. Med., 17, 1290, 10.1038/nm.2446 Martin, 2018, Defining memory CD8 T cell, Front. Immunol., 9, 2692, 10.3389/fimmu.2018.02692 Gattinoni, 2017, T memory stem cells in health and disease, Nat. Med., 23, 18, 10.1038/nm.4241 B.-W.L. Xiao-Dong Yuan, Expression Characteristics of Surface Markers of Memory T cells, CD45RO, CCR7 and CD62L, in Tumor-infiltrating Lymphocytes in Liver Cancer Tissues of Patients with Hepatocellular Carcinomas, J. Clin. Cell. Immunol. 04 (2013). https://doi.org/10.4172/2155-9899.1000181. Mahnke, 2013, The who's who of T-cell differentiation: Human memory T-cell subsets: HIGHLIGHTS, Eur. J. Immunol., 43, 2797, 10.1002/eji.201343751 Lugli, 2013, Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells, Nat. Protoc., 8, 33, 10.1038/nprot.2012.143 Lu, 2002, Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes, Clin. Cancer Res., 8, 3877 D.L. Wallace M. Bérard M.V.D. Soares J. Oldham J.E. Cook A.N. Akbar D.F. Tough P.C.L. Beverley Prolonged exposure of naïve CD8 + T cells to interleukin-7 or interleukin-15 stimulates proliferation without differentiation or loss of telomere length : Naïve CD8 T-cell proliferation 119 2 2006 243 253 10.1111/j.1365-2567.2006.02429.x. Wölfl, 2014, Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells, Nat. Protoc., 9, 950, 10.1038/nprot.2014.064 M. Candeias, 2015, The immune system in cancer prevention, development and therapy, Anticancer. Agents Med. Chem., 16, 101, 10.2174/1871520615666150824153523 Wang, 2017, Role of tumor microenvironment in tumorigenesis, J. Cancer, 8, 761, 10.7150/jca.17648 Drake, 2006, Mechanisms of Immune Evasion by Tumors, Adv. Immunol., 90, 51, 10.1016/S0065-2776(06)90002-9 Y. Yang Cancer immunotherapy: harnessing the immune system to battle cancer 125 9 2015 3335 3337 10.1172/JCI83871. Lee Ventola, 2017, Cancer immunotherapy, part 1: Current strategies and agents, P T., 42, 375 Sukari, 2016, Cancer Immunology and Immunotherapy, AR, 36, 5593, 10.21873/anticanres.11144 Huber, 2018, Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets?, Front. Immunol., 9, 2804, 10.3389/fimmu.2018.02804 Saxena, 2018, Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment, Trends in Cancer, 4, 119, 10.1016/j.trecan.2017.12.007 Bol, 2016, Dendritic Cell-Based Immunotherapy: State of the Art and Beyond, Clin. Cancer Res., 22, 1897, 10.1158/1078-0432.CCR-15-1399 G. Cechim, J.A.B. Chies, In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review, An. Acad. Bras. Cienc. 91 (2019). https://doi.org/10.1590/0001-3765201920190310. D.A. Bernal-Estévez, D.T. Tovar Murillo, C.A. Parra- Lopez, Functional and Phenotypic Analysis of Two-Day Monocyte-Derived Dendritic Cells Suitable for Immunotherapy Purposes, SOJ Immunol. 4 (2016) 1–18. https://doi.org/10.15226/2372-0948/4/2/00153. Dauer, 2005, FastDC derived from human monocytes within 48 h effectively prime tumor antigen-specific cytotoxic T cells, J. Immunol. Methods, 302, 145, 10.1016/j.jim.2005.05.010 Bernal-Estévez, 2016, Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient, BMC Cancer, 16, 10.1186/s12885-016-2625-2 Bernal-Estévez, 2018, Monitoring the responsiveness of T and antigen presenting cell compartments in breast cancer patients is useful to predict clinical tumor response to neoadjuvant chemotherapy, BMC Cancer, 18, 10.1186/s12885-017-3982-1 Trepiakas, 2008, Comparison of α-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients, Vaccine, 26, 2824, 10.1016/j.vaccine.2008.03.054 Mailliard, 2004, α-Type-1 Polarized Dendritic Cells: A Novel Immunization Tool with Optimized CTL-inducing Activity, Cancer Res., 64, 5934, 10.1158/0008-5472.CAN-04-1261 Kalinski, 2010, Polarized dendritic cells as cancer vaccines: Directing effector-type T cells to tumors, Semin. Immunol., 22, 173, 10.1016/j.smim.2010.03.002 J.-J. Lee R. Mailliard R. Muthuswamy K.A. Foon P. Kalinski Generation of alpha-Type-1 Polarized Dendritic Cells as a Potent Immunogen in Patients with Chronic Lymphocytic Leukemia. 110 11 2007 2059 2059 10.1182/blood.V110.11.2059.2059. Kalinski, 2005, Polarized DC1-Based Therapeutic Cancer Vaccines:, J. Immunother., 28, 656, 10.1097/01.cji.0000191090.97275.78 Wieckowski, 2011, Type-1 polarized dendritic cells loaded with apoptotic prostate cancer cells are potent inducers of CD8 + T cells against prostate cancer cells and defined prostate cancer-specific epitopes : αDC1s Induce Prostate Cancer-specific CTLs, Prostate, 71, 125, 10.1002/pros.21228 Park, 2011, Alpha-type 1 polarized dendritic cells loaded with apoptotic allogeneic breast cancer cells can induce potent cytotoxic T lymphocytes against breast cancer, Cancer Res Treat, 43, 56, 10.4143/crt.2011.43.1.56 Akiyama, 2012, α-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial, BMC Cancer, 12, 10.1186/1471-2407-12-623 P. Kaliński P.L. Vieira J.H.N. Schuitemaker E.C. de Jong M.L. Kapsenberg Prostaglandin E2 is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer 97 11 2001 3466 3469 10.1182/blood.V97.11.3466. D.Y. Li, C. Gu, J. Min, Z.H. Chu, Q.J. Ou, Maturation induction of human peripheral blood mononuclear cell-derived dendritic cells, Exp. Ther. Med. 4 (2012) 131–134. https://doi.org/10.3892/etm.2012.565. Möller, 2008, Dendritic Cell Maturation With Poly(I:C)-based Versus PGE2-based Cytokine Combinations Results in Differential Functional Characteristics Relevant to Clinical Application:, J. Immunother., 31, 506, 10.1097/CJI.0b013e318177d9e5 Trabanelli, 2015, PGE 2 -Induced IDO1 Inhibits the Capacity of Fully Mature DCs to Elicit an In Vitro Antileukemic Immune Response, J. Immunol. Res., 2015, 1 Jongmans, 2005, Th1-Polarizing Capacity of Clinical-Grade Dendritic Cells Is Triggered by Ribomunyl but Is Compromised by PGE2: The Importance of Maturation Cocktails, J. Immunother., 28, 480, 10.1097/01.cji.0000171290.78495.66 Wculek, 2020, Dendritic cells in cancer immunology and immunotherapy, Nat. Rev. Immunol., 20, 7, 10.1038/s41577-019-0210-z Eiz-Vesper, 2013, Adoptive T-cell immunotherapy from third-party donors: Characterization of donors and set up of a T-cell donor registry, Front. Immunol., 3, 410, 10.3389/fimmu.2012.00410 Montes, 2005, Optimum in vitro expansion of human antigen-specific CD8+ T cells for adoptive transfer therapy, Clin. Exp. Immunol., 142, 292, 10.1111/j.1365-2249.2005.02914.x Gerdemann, 2012, Rapidly Generated Multivirus-specific Cytotoxic T Lymphocytes for the Prophylaxis and Treatment of Viral Infections, Mol. Ther., 20, 1622, 10.1038/mt.2012.130 Gerdemann, 2011, Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma, Mol. Ther., 19, 2258, 10.1038/mt.2011.167 M.J. Pittet D. Valmori P.R. Dunbar D.E. Speiser D. Liénard F. Lejeune K. Fleischhauer V. Cerundolo J.-C. Cerottini P. Romero High Frequencies of Naive Melan-a/Mart-1–Specific Cd8+ T Cells in a Large Proportion of Human Histocompatibility Leukocyte Antigen (Hla)-A2 Individuals 190 5 1999 705 716 10.1084/jem.190.5.705. C. Alanio F. Lemaitre H.K.W. Law M. Hasan M.L. Albert Enumeration of human antigen–specific naive CD8+ T cells reveals conserved precursor frequencies 115 18 2010 3718 3725 10.1182/blood-2009-10-251124. M.O. Butler O. Imataki Y. Yamashita M. Tanaka S. Ansén A. Berezovskaya G. Metzler M.I. Milstein M.M. Mooney A.P. Murray H. Mano L.M. Nadler N. Hirano D. Unutmaz Ex Vivo Expansion of Human CD8+ T Cells Using Autologous CD4+ T Cell Help PLoS ONE 7 1 e30229 10.1371/journal.pone.0030229.s003. Y.-P. Lai C.-C. Lin W.-J. Liao C.-Y. Tang S.-C. Chen J.H. Fritz CD4+ T Cell-Derived IL-2 Signals during Early Priming Advances Primary CD8+ T Cell Responses PLoS ONE 4 11 e7766 10.1371/journal.pone.0007766.t002. Ahrends, 2019, CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities, Nat. Commun., 10, 1, 10.1038/s41467-019-13438-1 N. Cieri B. Camisa F. Cocchiarella M. Forcato G. Oliveira E. Provasi A. Bondanza C. Bordignon J. Peccatori F. Ciceri M.T. Lupo-Stanghellini F. Mavilio A. Mondino S. Bicciato A. Recchia C. Bonini IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors 121 4 2013 573 584 10.1182/blood-2012-05-431718. Mariotti, 2019, Innate lymphoid cells: Expression of PD-1 and other checkpoints in normal and pathological conditions, Front. Immunol., 10, 910, 10.3389/fimmu.2019.00910 Seidel, 2018, Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations, Front. Oncol., 8, 86, 10.3389/fonc.2018.00086 Buchbinder, 2016, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition, Am. J. Clin. Oncol., 39, 98, 10.1097/COC.0000000000000239 Tata, 2018, Role of the KLRG1 pathway in the immune response, J. Immunol., 200, 49, 10.4049/jimmunol.200.Supp.49.9 Li, 2016, KLRG1 restricts memory T cell antitumor immunity, Oncotarget, 7, 61670, 10.18632/oncotarget.11430 Greenberg, 2019, Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models, Oncotarget, 10, 1399, 10.18632/oncotarget.26659 Wang, 2019, Allogeneic dendritic cells induce potent antitumor immunity by activating KLRG1+CD8 T cells, Sci. Rep., 9