Characterization of pH-induced transitions of β-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies 1 1Edited by C. R. Matthews
Tài liệu tham khảo
Eigel, 1984, Nomenclature of proteins of cow’s milk: fifth revision, J. Dairy Sci., 67, 1599, 10.3168/jds.S0022-0302(84)81485-X
Kuwata, 1999, Solution structure and dynamics of bovine β-lactoglobulin A, Protein Sci., 8, 2541, 10.1110/ps.8.11.2541
Blanch, 1999, New insight into the pH-dependent conformational changes in bovine β-lactoglobulin from Raman optical activity, Protein Sci., 8, 1362, 10.1110/ps.8.6.1362
Uhrı́nová, 2000, Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer, Biochemistry, 39, 3565, 10.1021/bi992629o
Botelho, 2000, Pressure denaturation of β-lactoglobulin, Eur. J. Biochem., 267, 2235, 10.1046/j.1432-1327.2000.01226.x
Qin, 1997, Functional implications of structural differences between variants A and B of bovine β-lactoglobulin, Protein Sci., 8, 75, 10.1110/ps.8.1.75
Timasheff, 1960, Molecular interactions in β-lactoglobulin. V. The association of the genetic species of β-lactoglobulin below the isoelectric point, J. Am. Chem. Soc., 83, 464, 10.1021/ja01463a049
Oliveira, 2001, Crystal structures of bovine β-lactoglobulin in the orthorombic space group C2221. Structural differences between genetic variants A and B and features of the Tanford transition, Eur. J. Biochem., 268, 477
Qin, 1998, Structural basis of the Tanford transition of bovine β-lactoglobulin, Biochemistry, 37, 14014, 10.1021/bi981016t
Brownlow, 1997, Bovine β-lactoglobulin at 1.8 Å resolution - still an enigmatic lipocalin, Structure, 5, 481, 10.1016/S0969-2126(97)00205-0
Fogolari, 1998, Monomeric bovine β-lactoglobulin adopts a β-barrel fold at pH 2, FEBS Letters, 436, 149, 10.1016/S0014-5793(98)00936-3
McKenzie, 1967, Effect of pH on β-lactoglobulins, Nature, 214, 1101, 10.1038/2141101a0
Pederson, 1936, Ultracentrifugal and electrophoretic studies on the milk proteins. II. The lactoglobulins of Palmer, Biochem. J., 30, 961, 10.1042/bj0300961
Pessen, 1985, Proton relaxation rates of water in dilute solutions of β-lactoglobulin. Determination of cross relaxation and correlation with structural changes by the use of two genetic variants of self-associating globular protein, Biochim. Biophys. Acta, 828, 1, 10.1016/0167-4838(85)90002-0
Timasheff, 1964, Structure of the β-lactoglobulin tetramer, Nature, 203, 517, 10.1038/203517a0
Casal, 1988, Structural and conformational changes of β-lactoglobulin B, Biochim. Biophys. Acta, 957, 11, 10.1016/0167-4838(88)90152-5
Timasheff, 1966, Conformational transitions of bovine β-lactoglobulins A, B, and C, J. Biol. Chem., 241, 2496
Tanford, 1959, The reversible transformation of β-lactoglobulin at pH 7.5, J. Am. Chem. Soc., 81, 4032, 10.1021/ja01524a054
Groves, 1951, Effect of pH on the denaturation of beta-lactoglobulin and its dodecyl sulfate derivative, J. Am. Chem. Soc., 79, 2790, 10.1021/ja01150a106
Waissbluth, 1974, Alkaline denaturation of β-lactoglobulins. Activation parameters and effect of dye binding site, Biochemistry, 13, 1285, 10.1021/bi00703a035
Pérez, 1995, Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein, J. Dairy Sci., 78, 978, 10.3168/jds.S0022-0302(95)76713-3
Forge, 2000, Is folding of β-lactoglobulin non-hierarchic? Intermediate with native-like β-sheet and non-native α-helix, J. Mol. Biol., 296, 1039, 10.1006/jmbi.1999.3515
Arai, 1998, Kinetic refolding of β-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism, absorption and fluorescence spectroscopy, J. Mol. Biol., 275, 149, 10.1006/jmbi.1997.1456
Hamada, 1997, The equilibrium intermediate of β-lactoglobulin with non-native α-helical structure, J. Mol. Biol., 269, 479, 10.1006/jmbi.1997.1055
Katou, 2001, Native-like β-hairpin retained in the cold-denatured state of bovine β-lactoglobulin, J. Mol. Biol., 310, 471, 10.1006/jmbi.2001.4777
Leung, 1986, Adiabatic compressibility of myoglobin. Effects of axial ligand and denaturation, Biochim. Biophys. Acta, 870, 148, 10.1016/0167-4838(86)90018-X
Durchschlag, 1986, Specific volumes of biological macromolecules and some other molecules of biological interest, 45
Zamyatnin, 1984, Amino acid, peptide, and protein volume in solution, Annu. Rev. Biophys. Bioeng., 13, 145, 10.1146/annurev.bb.13.060184.001045
Heremans, 1998, Protein structure and dynamics at high pressure, Biochim. Biophys. Acta, 1386, 353, 10.1016/S0167-4838(98)00102-2
Chalikian, 1994, Hydration and partial compressibility of biological compounds, Biophys. Chem., 51, 89, 10.1016/0301-4622(94)85007-0
Chalikian, 1998, Thermodynamic analysis of biomolecules, Curr. Opin. Struct. Biol., 8, 657, 10.1016/S0959-440X(98)80159-0
Chalikian, 1998, Volumetric properties of nucleic acids, Biopolymers, 48, 264, 10.1002/(SICI)1097-0282(1998)48:4<264::AID-BIP6>3.3.CO;2-#
Chalikian, 1995, Volumetric characterizations of the native, molten, and unfolded states of cytochrome c at acidic pH, J. Mol. Biol., 250, 291, 10.1006/jmbi.1995.0377
Chalikian, 1996, Spectroscopic and volumetric investigation of cytochrome c unfolding at alkaline pH, FASEB J., 10, 164, 10.1096/fasebj.10.1.8566538
Chalikian, 1997, The native and the heat-induced denatured states of α-chymotrypsinogen A, J. Mol. Biol., 274, 237, 10.1006/jmbi.1997.1394
Filfil, 2000, Volumetric and spectroscopic characterizations of the native and acid-induced denatured states of staphylococcal nuclease, J. Mol. Biol., 299, 827, 10.1006/jmbi.2000.3773
Tamura, 1995, Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility, Biochemistry, 34, 1878, 10.1021/bi00006a008
Kharakoz, 1997, Molten globule of human α-lactalbumin, Biochemistry, 36, 1882, 10.1021/bi960264r
Nölting, 1993, Adiabatic compressibility of molten globules, Biochemistry, 32, 12319, 10.1021/bi00097a007
Valdez, 2001, Hydration and protein folding in water and in reverse micelles. Compressibility and volume changes, Biophys. J., 80, 2751, 10.1016/S0006-3495(01)76243-1
Dong, 1996, Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B, Biochemistry, 35, 1450, 10.1021/bi9518104
Barteri, 2000, Effect of pH on the structure and aggregation of human glycodelin A. A comparison with β-lactoglobulin, Biochim. Biophys. Acta, 1479, 255, 10.1016/S0167-4838(00)00021-2
Provencher, 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry, 20, 33, 10.1021/bi00504a006
Kuntz, 1994, Hydration of proteins and polypepdites, Advan. Protein Chem., 28, 239, 10.1016/S0065-3233(08)60232-6
Gekko, 1986, Compressibility-structure relationship of globular proteins, Biochemistry, 25, 6563, 10.1021/bi00369a034
Chalikian, 1996, The hydration of globular proteins as derived from volume and compressibility measurements, J. Mol. Biol., 260, 588, 10.1006/jmbi.1996.0423
Tanford, 1968, Protein denaturation. Parts A and B, Advan. Protein. Chem., 23, 121, 10.1016/S0065-3233(08)60401-5
Tanford, 1970, Protein denaturation. Part C, Advan. Protein Chem., 24, 1, 10.1016/S0065-3233(08)60241-7
Barrick, 1993, Three-state analysis of sperm whale apomyoglobin folding, Biochemistry, 32, 3790, 10.1021/bi00065a035
Foygel, 1995, Volume changes of the molten globule transition of horse heart ferricytochrome c, Protein Sci., 4, 1426, 10.1002/pro.5560040717
Ybe, 1994, Slow folding kinetics of ribonuclease A by volume change and circular dichroism, Protein Sci., 3, 638, 10.1002/pro.5560030412
Antosiewicz, 1996, The determination of pKas in proteins, Biochemistry, 35, 7819, 10.1021/bi9601565
Demchuk, 1996, Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins, J. Phys. Chem., 100, 17373, 10.1021/jp960111d
Sham, 1997, Consistent calculations of pKa‘s of ionizable residues in proteins, J. Phys. Chem. ser. B, 101, 4458, 10.1021/jp963412w
Van Vlijmen, 1998, Improving the accuracy of protein pKa calculations, Proteins: Struct. Funct. Genet., 33, 145, 10.1002/(SICI)1097-0134(19981101)33:2<145::AID-PROT1>3.0.CO;2-I
Chalikian, 1998, Hydration of diglycyl tripepdides with nonpolar side-chains, Biophys. Chem., 75, 57, 10.1016/S0301-4622(98)00192-6
Millero, 1977, Relative sound velocities of sea salts at 25 °C, J. Acoust. Soc. Am., 61, 1492, 10.1121/1.381449
Gindikin, 2000
Sarvazyan, 1979, Relaxational contributions to protein compressibility from ultrasonic data, Biopolymers, 18, 3015, 10.1002/bip.1979.360181209
Townend, 1960, Molecular interactions in β-lactoglobulin. IV. The dissociation of β-lactoglobulin below pH 3.5, J. Am. Chem. Soc., 82, 3175, 10.1021/ja01497a047
Timasheff, 1960, Molecular interactions in β-lactoglobulin. VI. The dissociation of the genetic species of β-lactoglobulin at acid pH’s, J. Am. Chem. Soc., 83, 470, 10.1021/ja01463a050
Silva, 1993, Pressure stability of proteins, Annu. Rev. Phys. Chem., 44, 89, 10.1146/annurev.pc.44.100193.000513
Robinson, 1995, Hydrostatic and osmotic pressure as tools to study macromolecular recognition, Methods Enzymol., 259, 395, 10.1016/0076-6879(95)59054-4
Chalikian, 1996, On volume changes accompanying conformational transitions of biopolymers, Biopolymers, 39, 619, 10.1002/(SICI)1097-0282(199611)39:5<619::AID-BIP1>3.0.CO;2-Z
Chalikian, 1996, Compressibility as a means top detect and characterize globular protein states, Proc. Natl Acad. Sci. USA, 93, 1012, 10.1073/pnas.93.3.1012
Tanford, 1960, Ionization-linked changes in protein conformation. II. The N→R transition in β-lactoglobulin, J. Am. Chem. Soc., 83, 1634, 10.1021/ja01468a022
Lakowicz, 1999
Lee, 1971, The interpretation of protein structures, J. Mol. Biol., 55, 397, 10.1016/0022-2836(71)90324-X
Townend, 1960, Molecular interactions in β-lactoglobulin. II. Ultracentrifugal and electrophoretic studies of the association of β-lactoglobulin below its isoelectric point, J. Am. Chem. Soc., 82, 3161, 10.1021/ja01497a045
Kupke, 1973, Density and volume change measurements, 1
Eggers, 1973, Ultrasonic measurements with millilitre liquid samples in the 0.5-100 MHz range, Rev. Sci. Instrum., 44, 969, 10.1063/1.1686339
Sarvazyan, 1982, Development of methods of precise ultrasonic measurements in small volumes of liquids, Ultrasonics, 20, 151, 10.1016/0041-624X(82)90032-4
Eggers, 1992, Ultrasonic velocity and attenuation measurements in liquids with resonator, extending the MHz frequency range, Acustica, 76, 231
Eggers, 1996, Broad-band ultrasonic measurement techniques for liquids, Meas. Sci. Technol., 7, 1, 10.1088/0957-0233/7/1/001
Sarvazyan, 1988, Constant-path acoustic interferometer with transition layers for precision measurements in small liquid volumes, Sov. Phys. Acoust., 34, 631
Sarvazyan, 1991, Theoretical analysis of an ultrasonic interferometer for precise measurements at high pressures, Ultrasonics, 29, 119, 10.1016/0041-624X(91)90040-F
Barnatt, 1952, The velocity of sound in electrolytic solutions, J. Chem. Phys., 20, 278, 10.1063/1.1700391
Owen, 1957, Standard partial molal compressibilities by ultrasonics. 1. Sodium chloride and potassium chloride at 25 °C, J. Phys. Chem., 61, 479, 10.1021/j150550a021
Berstein, 1977, The Protein Data Bank, J. Mol. Biol., 112, 535, 10.1016/S0022-2836(77)80200-3
Richards, 1977, Areas, volumes, packing and protein structure, Annu. Rev. Biophys. Bioeng., 6, 151, 10.1146/annurev.bb.06.060177.001055
Gerstein, 1995, The volume of atoms on the protein surface, J. Mol. Biol., 249, 955, 10.1006/jmbi.1995.0351
Harpaz, 1994, Volume changes on protein folding, Structure, 2, 641, 10.1016/S0969-2126(00)00065-4
Gerstein, 1992, Å resolution-sensitive procedure for comparing protein surfaces and its application to the comparison of antigen-combining sites, Acta Crystallog. sect. A, 48, 271, 10.1107/S0108767391012680