Complex micelles with the bioactive function of reversible oxygen transfer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ikkala, O.; Brinke, G. T. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.
Zhang, S. G. Fabricationof novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.
Dickerson, R. E.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin/Cummings: Menlo Park, CA, 1983.
Zhang, K.; Zhu, L. L.; Fan, M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol. Neurosci. 2011, 4, 1–11.
Schmedtje Jr, J. F.; Ji, Y.-S. Hypoxia and molecular cardiovascular medicine. Trends. Cardiovasc. Med. 1998, 8, 24–33.
Facciabene, A.; Peng, X. H.; Hagemann, I. S.; Balint, K.; Barchetti, A.; Wang, L.-P.; Gimmoty, P. A.; Glilks, B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226–230.
Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004, 4, 437–447.
Wang, L.-Y.; Shi, X.-Y.; Yang, C.-S.; Huang, D.-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale 2013, 5, 416–421.
Lukin, J. A.; Ho, C. The structure-function relationship of hemoglobin in solution at atomic resolution. Chem. Rev. 2004, 104, 1219–1230.
Shikama, K. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chem. Rev. 1998, 98, 1357–1373.
Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 2004, 104, 561–588.
Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. Asupramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidise. Angew. Chem. Int. Ed. 2007, 46, 4285–4289.
Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-Supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem. Int. Ed. 2012, 51, 3822–3825.
Kano, K.; Kitagishi, H.; Kodera, M.; Hirota, S. Dioxygen binding to a simple myoglobin model in aqueous solution. Angew. Chem. Int. Ed. 2005, 44, 435–438.
Kano, K.; Itoh, Y.; Kitagishi, H.; Hayashi, T.; Hirota, S. A supramolecular receptor of diatomic molecules (O2, CO, NO) in aqueous solution. J. Am. Chem. Soc. 2008, 130, 8006–8015.
Watanabe, K.; Kitagishi, H.; Kano, K. Supramolecular iron porphyrin/cyclodextrin dimer complex that mimics the functions of hemoglobin and methemoglobin. Angew. Chem. Int. Ed, 2013, 52, 6894–6897.
Yu, S.-H.; Cölfen, H.; Hartmann, J.; Antonietti, M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv. Funct. Mater. 2002, 12, 541–545.
Wu, K.; Shi, L. Q.; Zhang, W. Q.; An, Y. L.; Zhang, X.; Li, Z. Y.; Zhu, X. X. Thermoresponsiveness of hybrid micelles from poly(ethylene glycol)-block-poly(4-vinylpyridium) cations and SO4 2− anions in aqueous solutions. Langmuir 2006, 4, 1474–1477.
Khan, M. O. F.; Austin, S. E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S. N.; Kendrick, H.; Yardley, V.; Croft, S. L.; Douglas, K. T. Use of an additional hydrophobic binding Site, the Z Site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammoniumphenothiazines. J. Med. Chem. 2000, 43, 3148–3156.
Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254–2266.
Venema, F.; Rowan, A. E.; Nolte, R. J. M. Binding of porphyrins in cyclodextrin dimers. J. Am. Chem. Soc. 1996, 118, 257–258.
Eckert, N. A.; Stoian, S.; Smith, J. M.; Bominaar, E. L.; Münck, E.; Holland, P. L. Synthesis, structure, and spectroscopy of an oxodiiron(II) complex. J. Am. Chem. Soc. 2005, 127, 9344–9345.
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753.
Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J. Structural studies by exciton coupled circular dichroism over a large distance: porphyrin derivatives of steroids, dimeric steroids, and brevetoxin B. J. Am. Chem. Soc, 1996, 118, 5198–5206.
Zhao, L. Z.; Ma, R. J.; Li, J. B.; Li, Y.; An, Y. L.; Shi, L. Q. J- and H-aggregates of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin and interconversion in PEG-b-P4VP micelles. Biomacromolecules 2008, 9, 2601–2608.
Kano, K.; Kitagishi, H.; Tamura, S.; Yamada, A. Anion binding to a ferric porphyrin complexed with per-O-methylated β-cyclodextrin in aqueous solution. J. Am. Chem. Soc. 2004, 126, 15202–15210.
Kano, K.; Nishiyabu, R.; Asada, T.; Kuroda, Y. Static and dynamic behavior of 2:1 inclusion complexes of cyclodextrins and charged porphyrins in aqueous organic media. J. Am. Chem. Soc. 2002, 124, 9937–9944.
Kitagishi, H.; Negi, S.; Kiriyama, A.; Honbo, A.; Sugiura, Y.; Kawaguchi, A. T.; Kano, K. A diatomic molecule receptor that removes CO in a living organism. Angew. Chem. Int. Ed. 2010, 49, 1312–1315.
Kano, K.; Kitagishi, H.; Dagallier, C.; Kodera, M.; Matsuo, T.; Hayashi, T.; Hisaeda, Y.; Hirota, S. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg. Chem. 2006, 45, 4448–4460.
Geng, Y.; Dalhaimer, P.; Cai, S. S., Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. 2007, 2, 249–255.
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.
Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech. 2007, 2, 47–52.