Complex micelles with the bioactive function of reversible oxygen transfer

Liangliang Shen1, Lizhi Zhao2, Rui Qu1, Heng Fan1, Hongjun Gao1, Yingli An1, Linqi Shi1
1State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Institute of Polymer Chemistry, Nankai University, Tianjin, China
2State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ikkala, O.; Brinke, G. T. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.

Zhang, S. G. Fabricationof novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.

Dickerson, R. E.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin/Cummings: Menlo Park, CA, 1983.

Zhang, K.; Zhu, L. L.; Fan, M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol. Neurosci. 2011, 4, 1–11.

Schmedtje Jr, J. F.; Ji, Y.-S. Hypoxia and molecular cardiovascular medicine. Trends. Cardiovasc. Med. 1998, 8, 24–33.

Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410.

Harris, A. L. Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002, 2, 38–47.

Facciabene, A.; Peng, X. H.; Hagemann, I. S.; Balint, K.; Barchetti, A.; Wang, L.-P.; Gimmoty, P. A.; Glilks, B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226–230.

Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004, 4, 437–447.

Wang, L.-Y.; Shi, X.-Y.; Yang, C.-S.; Huang, D.-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale 2013, 5, 416–421.

Reedy, C. J.; Gibney, B. R. Heme protein assemblies. Chem. Rev. 2004, 104, 617–649.

Lukin, J. A.; Ho, C. The structure-function relationship of hemoglobin in solution at atomic resolution. Chem. Rev. 2004, 104, 1219–1230.

Shikama, K. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chem. Rev. 1998, 98, 1357–1373.

Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 2004, 104, 561–588.

Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. Asupramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidise. Angew. Chem. Int. Ed. 2007, 46, 4285–4289.

Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-Supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem. Int. Ed. 2012, 51, 3822–3825.

Kano, K.; Kitagishi, H.; Kodera, M.; Hirota, S. Dioxygen binding to a simple myoglobin model in aqueous solution. Angew. Chem. Int. Ed. 2005, 44, 435–438.

Kano, K.; Itoh, Y.; Kitagishi, H.; Hayashi, T.; Hirota, S. A supramolecular receptor of diatomic molecules (O2, CO, NO) in aqueous solution. J. Am. Chem. Soc. 2008, 130, 8006–8015.

Watanabe, K.; Kitagishi, H.; Kano, K. Supramolecular iron porphyrin/cyclodextrin dimer complex that mimics the functions of hemoglobin and methemoglobin. Angew. Chem. Int. Ed, 2013, 52, 6894–6897.

Yu, S.-H.; Cölfen, H.; Hartmann, J.; Antonietti, M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv. Funct. Mater. 2002, 12, 541–545.

Wu, K.; Shi, L. Q.; Zhang, W. Q.; An, Y. L.; Zhang, X.; Li, Z. Y.; Zhu, X. X. Thermoresponsiveness of hybrid micelles from poly(ethylene glycol)-block-poly(4-vinylpyridium) cations and SO4 2− anions in aqueous solutions. Langmuir 2006, 4, 1474–1477.

Khan, M. O. F.; Austin, S. E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S. N.; Kendrick, H.; Yardley, V.; Croft, S. L.; Douglas, K. T. Use of an additional hydrophobic binding Site, the Z Site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammoniumphenothiazines. J. Med. Chem. 2000, 43, 3148–3156.

Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254–2266.

Venema, F.; Rowan, A. E.; Nolte, R. J. M. Binding of porphyrins in cyclodextrin dimers. J. Am. Chem. Soc. 1996, 118, 257–258.

Eckert, N. A.; Stoian, S.; Smith, J. M.; Bominaar, E. L.; Münck, E.; Holland, P. L. Synthesis, structure, and spectroscopy of an oxodiiron(II) complex. J. Am. Chem. Soc. 2005, 127, 9344–9345.

Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753.

Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J. Structural studies by exciton coupled circular dichroism over a large distance: porphyrin derivatives of steroids, dimeric steroids, and brevetoxin B. J. Am. Chem. Soc, 1996, 118, 5198–5206.

Zhao, L. Z.; Ma, R. J.; Li, J. B.; Li, Y.; An, Y. L.; Shi, L. Q. J- and H-aggregates of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin and interconversion in PEG-b-P4VP micelles. Biomacromolecules 2008, 9, 2601–2608.

Kano, K.; Kitagishi, H.; Tamura, S.; Yamada, A. Anion binding to a ferric porphyrin complexed with per-O-methylated β-cyclodextrin in aqueous solution. J. Am. Chem. Soc. 2004, 126, 15202–15210.

Kano, K.; Nishiyabu, R.; Asada, T.; Kuroda, Y. Static and dynamic behavior of 2:1 inclusion complexes of cyclodextrins and charged porphyrins in aqueous organic media. J. Am. Chem. Soc. 2002, 124, 9937–9944.

Kitagishi, H.; Negi, S.; Kiriyama, A.; Honbo, A.; Sugiura, Y.; Kawaguchi, A. T.; Kano, K. A diatomic molecule receptor that removes CO in a living organism. Angew. Chem. Int. Ed. 2010, 49, 1312–1315.

Kano, K.; Kitagishi, H.; Dagallier, C.; Kodera, M.; Matsuo, T.; Hayashi, T.; Hisaeda, Y.; Hirota, S. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg. Chem. 2006, 45, 4448–4460.

Geng, Y.; Dalhaimer, P.; Cai, S. S., Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. 2007, 2, 249–255.

Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech. 2007, 2, 47–52.

Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.