The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study
Tài liệu tham khảo
Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Zhang, 2012, Ambipolar MoS2 thin flake transistors, Nano Lett., 12, 1136, 10.1021/nl2021575
Yin, 2011, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557
Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100
Huang, 2015, Two dimensional atomically thin MoS2 nanosheets and their sensing applications, Nanoscale, 7, 19358, 10.1039/C5NR06144J
Zhang, 2015, Synthesis and sensor applications of MoS2-based nanocomposites, Nanoscale, 7, 18364, 10.1039/C5NR06121K
Kannan, 2015, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale, 7, 13293, 10.1039/C5NR03633J
Rao, 2015, Comparative study of potential applications of graphene MoS2, and other two-dimensional materials in energy devices, sensors, and related areas, ACS Appl. Mater. Interfaces, 7, 7809, 10.1021/am509096x
Perkins, 2013, Chemical vapor sensing with monolayer MoS2, Nano Lett., 13, 668, 10.1021/nl3043079
Zhang, 2013, High-gain phototransistors based on a CVD MoS2 monolayer, Adv. Mater., 25, 3456, 10.1002/adma.201301244
Li, 2012, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature, Small, 8, 63, 10.1002/smll.201101016
He, 2012, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications, Small, 8, 2994, 10.1002/smll.201201224
Lee, 2013, High-performance sensors based on molybdenum disulfide thin films, Adv. Mater., 25, 6699, 10.1002/adma.201303230
Late, 2013, Sensing behavior of atomically thin-layered MoS2 transistors, ACS Nano, 7, 4879, 10.1021/nn400026u
Yao, 2013, High-concentration aqueous dispersions of MoS2, Adv. Funct. Mater., 23, 3577, 10.1002/adfm.201201843
Donarelli, 2015, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors, Sens. Actuators B, 207, 602, 10.1016/j.snb.2014.10.099
Cho, 2015, Chemical sensing of 2D graphene/MoS2 heterostructure device, ACS Appl. Mater. Interfaces, 7, 16775, 10.1021/acsami.5b04541
Liu, 2014, High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors, ACS Nano, 8, 5304, 10.1021/nn5015215
Yue, 2013, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-425
Zhao, 2014, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett., 595–596, 35, 10.1016/j.cplett.2014.01.043
Ray, 2016, First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications, Sens. Actuators B, 222, 492, 10.1016/j.snb.2015.08.039
Kou, 2014, Strain engineering of selective chemical adsorption on monolayer MoS2, Nanoscale, 6, 5156, 10.1039/C3NR06670C
Li, 2011, Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection, ACS Nano, 5, 6955, 10.1021/nn201433r
Oleksandr, 2007, Carbon nanotube sensors for exhaled breath components, Nanotechnology, 18, 375502, 10.1088/0957-4484/18/37/375502
Beheshtian, 2013, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde, Sens. Actuators B, 181, 829, 10.1016/j.snb.2013.02.086
Zhou, 2011, Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors, Nanotechnology, 22, 385502, 10.1088/0957-4484/22/38/385502
Dai, 2009, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study, Appl. Phys. Lett., 95, 2321051, 10.1063/1.3272008
Huang, 2015, High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity, Chem. Commun., 51, 7903, 10.1039/C5CC01841B
Kim, 2015, Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction, Adv. Mater., 0, 1
Komsa, 2012, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping, Phys. Rev. Lett., 109, 035503, 10.1103/PhysRevLett.109.035503
Komsa, 2013, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation, Phys. Rev. B, 88, 035301, 10.1103/PhysRevB.88.035301
Ma, 2016, Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals, Appl. Surf. Sci., 364, 181, 10.1016/j.apsusc.2015.12.142
Luo, 2016, Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study, Chem. Phys. Lett., 643, 27, 10.1016/j.cplett.2015.10.077
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Le, 2014, Single-layer MoS2 with sulfur vacancies: structure and catalytic application, J. Phys. Chem. C, 118, 5346, 10.1021/jp411256g
Ataca, 2011, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C, 115, 13303, 10.1021/jp2000442
Joensen, 1987, A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy, J. Phys. C: Solid State Phys., 20, 4043, 10.1088/0022-3719/20/26/009
Lin, 2013, First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation, J. Phys. Chem. C, 117, 17319, 10.1021/jp4055445
Li, 2010, CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts, J. Phys. Chem. C, 114, 6250, 10.1021/jp911535v
Lu, 2009, Metal-embedded graphene: a possible catalyst with high activity, J. Phys. Chem. C, 113, 20156, 10.1021/jp908829m
Li, 2012, Fe-Anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation, J. Phys. Chem. C, 116, 2507, 10.1021/jp209572d
Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010
Allred, 1961, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5
Xie, 2012, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci., 258, 6391, 10.1016/j.apsusc.2012.03.048
Yong-Hui, 2009, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, 20, 185504, 10.1088/0957-4484/20/18/185504