The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study

Applied Surface Science - Tập 383 - Trang 98-105 - 2016
Dongwei Ma1, Weiwei Ju2, Tingxian Li1, Xiwei Zhang1, Chaozheng He3, Benyuan Ma3, Zhansheng Lu4, Zongxian Yang4
1School of Physics, Anyang Normal University, Anyang 455000, China
2College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
3Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061, China
4College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China

Tài liệu tham khảo

Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A., 102, 10451, 10.1073/pnas.0502848102 Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Zhang, 2012, Ambipolar MoS2 thin flake transistors, Nano Lett., 12, 1136, 10.1021/nl2021575 Yin, 2011, Single-layer MoS2 phototransistors, ACS Nano, 6, 74, 10.1021/nn2024557 Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol., 8, 497, 10.1038/nnano.2013.100 Huang, 2015, Two dimensional atomically thin MoS2 nanosheets and their sensing applications, Nanoscale, 7, 19358, 10.1039/C5NR06144J Zhang, 2015, Synthesis and sensor applications of MoS2-based nanocomposites, Nanoscale, 7, 18364, 10.1039/C5NR06121K Kannan, 2015, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale, 7, 13293, 10.1039/C5NR03633J Rao, 2015, Comparative study of potential applications of graphene MoS2, and other two-dimensional materials in energy devices, sensors, and related areas, ACS Appl. Mater. Interfaces, 7, 7809, 10.1021/am509096x Perkins, 2013, Chemical vapor sensing with monolayer MoS2, Nano Lett., 13, 668, 10.1021/nl3043079 Zhang, 2013, High-gain phototransistors based on a CVD MoS2 monolayer, Adv. Mater., 25, 3456, 10.1002/adma.201301244 Li, 2012, Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature, Small, 8, 63, 10.1002/smll.201101016 He, 2012, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications, Small, 8, 2994, 10.1002/smll.201201224 Lee, 2013, High-performance sensors based on molybdenum disulfide thin films, Adv. Mater., 25, 6699, 10.1002/adma.201303230 Late, 2013, Sensing behavior of atomically thin-layered MoS2 transistors, ACS Nano, 7, 4879, 10.1021/nn400026u Yao, 2013, High-concentration aqueous dispersions of MoS2, Adv. Funct. Mater., 23, 3577, 10.1002/adfm.201201843 Donarelli, 2015, Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors, Sens. Actuators B, 207, 602, 10.1016/j.snb.2014.10.099 Cho, 2015, Chemical sensing of 2D graphene/MoS2 heterostructure device, ACS Appl. Mater. Interfaces, 7, 16775, 10.1021/acsami.5b04541 Liu, 2014, High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors, ACS Nano, 8, 5304, 10.1021/nn5015215 Yue, 2013, Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-425 Zhao, 2014, Gas adsorption on MoS2 monolayer from first-principles calculations, Chem. Phys. Lett., 595–596, 35, 10.1016/j.cplett.2014.01.043 Ray, 2016, First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications, Sens. Actuators B, 222, 492, 10.1016/j.snb.2015.08.039 Kou, 2014, Strain engineering of selective chemical adsorption on monolayer MoS2, Nanoscale, 6, 5156, 10.1039/C3NR06670C Li, 2011, Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection, ACS Nano, 5, 6955, 10.1021/nn201433r Oleksandr, 2007, Carbon nanotube sensors for exhaled breath components, Nanotechnology, 18, 375502, 10.1088/0957-4484/18/37/375502 Beheshtian, 2013, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde, Sens. Actuators B, 181, 829, 10.1016/j.snb.2013.02.086 Zhou, 2011, Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors, Nanotechnology, 22, 385502, 10.1088/0957-4484/22/38/385502 Dai, 2009, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study, Appl. Phys. Lett., 95, 2321051, 10.1063/1.3272008 Huang, 2015, High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity, Chem. Commun., 51, 7903, 10.1039/C5CC01841B Kim, 2015, Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction, Adv. Mater., 0, 1 Komsa, 2012, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping, Phys. Rev. Lett., 109, 035503, 10.1103/PhysRevLett.109.035503 Komsa, 2013, From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation, Phys. Rev. B, 88, 035301, 10.1103/PhysRevB.88.035301 Ma, 2016, Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals, Appl. Surf. Sci., 364, 181, 10.1016/j.apsusc.2015.12.142 Luo, 2016, Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study, Chem. Phys. Lett., 643, 27, 10.1016/j.cplett.2015.10.077 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Le, 2014, Single-layer MoS2 with sulfur vacancies: structure and catalytic application, J. Phys. Chem. C, 118, 5346, 10.1021/jp411256g Ataca, 2011, Functionalization of single-layer MoS2 honeycomb structures, J. Phys. Chem. C, 115, 13303, 10.1021/jp2000442 Joensen, 1987, A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy, J. Phys. C: Solid State Phys., 20, 4043, 10.1088/0022-3719/20/26/009 Lin, 2013, First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of CO oxidation, J. Phys. Chem. C, 117, 17319, 10.1021/jp4055445 Li, 2010, CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts, J. Phys. Chem. C, 114, 6250, 10.1021/jp911535v Lu, 2009, Metal-embedded graphene: a possible catalyst with high activity, J. Phys. Chem. C, 113, 20156, 10.1021/jp908829m Li, 2012, Fe-Anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation, J. Phys. Chem. C, 116, 2507, 10.1021/jp209572d Henkelman, 2006, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010 Allred, 1961, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5 Xie, 2012, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci., 258, 6391, 10.1016/j.apsusc.2012.03.048 Yong-Hui, 2009, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology, 20, 185504, 10.1088/0957-4484/20/18/185504