Solid solution between lead fluorapatite and lead fluorvanadate apatite: mixing behavior, Raman feature and thermal expansivity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adler HH (1964) Infrared spectra of phosphate minerals: symmetry and substitutional effects in the pyromorphite series. Am Mineral 49:1002–1015
Adler HH (1968) Infrared spectra of phosphate minerals: splitting and frequency shifts associated with substitution of PO4 3− for AsO4 3− in mimetite (Pb5(AsO4)3Cl). Am Mineral 53:1740–1744
Badraoui B, Aissa A, Bigi A, Debbabi M, Gazzano M (2006) Structural investigations of lead-strontium fluoroapatites. J Solid State Chem 179:3065–3072
Baker WE (1966) An X-ray diffraction study of synthetic members of the pyromorphite series. Am Mineral 51:1712–1721
Bartholomäi G, Klee WE (1978) The vibrational spectra of pyromorphite, vanadinite and mimetite. Spectrochim Acta 34A:831–843
Bauer M, Klee WE (1993) The monoclinic-hexagonal phase transition in chlorapatite. Eur J Mineral 5:307–316
Belokoneva EL, Troneva EA, Dem’yanets LN, Duderov NG, Belov NV (1982) Crystal structure of synthetic fluoropyromorphite Pb5(PO4)3F. Sov Phys Crystallogr 27:476–477
Beran A, Voll D, Schneider H (2004) IR spectroscopy as a tool for the characterization of ceramic precursor phases. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU notes in mineralogy, vol 6. European Mineralogical Union, Budapest, pp 189–226
Boechat CB, Eon J-G, Rossi AM, Andre′ de Castro Perez C, Aguiar da Silva San Gil R (2000) Structure of vanadate in calcium phosphate and vanadate apatite solid solutions. Phys Chem Chem Phys 2:4225–4230
Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich RM, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Mineral 11:1023–1035
Chernorukov NG, Knyazev AV, Bulanov EN (2010) Isomorphism and phase diagram of the Pb5(PO4)3Cl-Pb5(VO4)3Cl system. Russ J Inorg Chem 55:1463–1470
Cockbain AG (1968) Lead apatite solid-solution series. Mineral Mag 36:1171–1173
Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Mineral 28:219–224
Dong ZL, White TJ, Sun K, Wang LM, Ewing RC (2005) Electron irradiation induced transformation of (Pb5Ca5)(VO4)6F2 apatite to CaVO3 perovskite. J Am Ceram Soc 88:184–190
Elliott JC (2002) Calcium phosphates biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 427–453
Eon JG, Boechat CB, Rossi AM, Terra J, Ellis DE (2006) A structural analysis of lead hydroxyvanadinite. Phys Chem Chem Phys 8:1845–1851
Fischer GR, Bardhan P, Geiger JE (1983) The lattice thermal expansion of hydroxyapatite. J Mater Sci Lett 2:577–578
Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Mineral 37:1–9
Frost RL, Palmer SJ (2007) A Raman spectroscopic study of the phosphate mineral pyromorphite Pb5(PO4)3Cl. Polyhedron 26:4533–4541
Frost RL, Crane M, Williams PA, Theo Kloprogge J (2003) Isomorphic substitution in vanadinite [Pb5(VO4)3Cl]-a Raman spectroscopic study. J Raman Spectrosc 34:214–220
Grisafe DA, Hummel FA (1970) Pentavalent Ion substitution in the apatite structure part A. Crystal chemistry. J Solid State Chem 2:160–166
Gupta SK, Rao PVR, Narasaraju TSB (1986) Physico-chemical aspects of calcium vanadate apatite. J Mater Sci 21:161–164
Hardcastle FD, Wachs IE (1991) Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. J Phys Chem 95:5031–5041
Hu X, Liu X, He Q, Wang H, Qin S, Ren L, Wu C, Chang L (2011) Thermal expansion of andalusite and sillimanite at ambient pressure: a powder X-ray diffraction study up to 1,000°C. Mineral Mag 75:363–374
Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 1–12
Kerrick DM, Darken LS (1975) Statistical thermodynamic models for ideal oxide and silicate solid solutions, with application to plagioclase. Geochim Cosmochim Acta 39:1431–1442
Kim JY, Fenton RR, Hunter BA, Kennedy BJ (2000) Powder diffraction studies of synthetic calcium and lead apatites. Aust J Chem 53:679–686
Kim JY, Dong Z, White TJ (2005) Model apatite systems for the stabilization of toxic metals: II, Cation and metalloid substitutions in chlorapatites. J Am Ceram Soc 88:1253–1260
Klee WE (1970) The vibrational spectra of the phosphate ions in fluorapatite. Zeit Kristallogr 131:95–102
Knyazev AV, Chernorukov NG, Bulanov EN (2011) Isomorphism and phase diagram of Pb5(PO4)3F-Pb5(PO4)3Cl system. Thermochim Acta 513:112–118
Kreidler ER, Hummel FA (1970) The crystal chemistry of apatite: structure fields of fluor- and chlorapatite. Am Mineral 55:170–184
Lang JR, Lueck B, Mortensen JK, Kelly Russell J, Stanley CR, Thompson JFH (1995) Triassic-Jurassic silica-undersaturated and silica-saturated alkalic intrusions in the Cordillera of British Columbia: implications for arc magmatism. Geology 23:451–454
Levitt SR, Condrate RA (1970) The vibrational spectra of lead apatites. Am Mineral 55:1562–1575
Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584
Liu X, He Q, Wang H, Fleet ME, Hu X (2010) Thermal expansion of kyanite at ambient pressure: an X-ray powder diffraction study up to 1000°C. Geosci Front 1:91–97
Liu X, Fleet ME, Shieh SR, He Q (2011a) Synthetic lead bromapatite: x-ray structure at ambient pressure and compressibility up to about 20 GPa. Phys Chem Mineral 38:397–406
Liu X, Liu W, He Q, Deng L, Wang H, He D, Li B (2011b) Isotropic thermal expansivity and anisotropic compressibility of ReB2. Chin Phys Lett 28:036401
Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011c) Equation of state of carbonated hydroxylapatite at ambient temperature: significance of carbonate. Am Mineral 96:74–80
Ma QY, Traina SJ, Logan TJ, Ryan JA (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810
Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Mineral 31:580–584
Mercier PHJ, Dong Z, Baikie T, Le Page Y, White TJ, Whitfield PS, Mitchel LD (2007) Ab initio constrained crystal-chemical Rietveld refinement of Ca10(V x P1-x O4)6F2 apatites. Acta Cryst B63:37–48
Merker L, Wondratschek H (1959) Bleiverbindungen mit Apatitstruktur, insbesondere Blei-Jod-und Blei-Brom-Apatite. Z Anorg Allg Chem 300:41–50
Miyake M, Ishigaki K, Suzuki T (1986) Structure refinements of Pb2+ ion-exchanged apatites by X-ray powder pattern-fitting. J Solid State Chem 61:230–235
Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Chantilly, pp 13–49
Podsiadlo H (1990) Polymorphic transitions in the binary system lead fluorapatite [Pb10(PO4)6Cl2]–calcium fluorapatite [Ca10(PO4)6Cl2]. J Therm Anal 36:569–575
Popović L, de Waal D, Boeyens JCA (2005) Correlation between Raman wavenumbers and P-O bond lengths in crystalline inorganic phosphates. J Raman Spectrosc 36:2–11
Ruszala F, Kostiner E (1975) Preparation and characterization of single crystals in the apatite system Ca10(PO4)6(Cl, OH)2. J Crystal Growth 30:93–95
Sha MC, Li Z, Brad RC (1994) Single-crystal elastic constants of fluorapatite, Ca5F(PO4)3. J Appl Phys 75:7784–7787
Suzuki T, Ishigaki K, Miyake M (1984) Synthetic hydroxyapatites as inorganic cation exchangers. J Chem Soc Faraday Trans I 80:3157–3165
Tonegawa T, Ikoma T, Suetsugu Y, Igawa N, Matsushita Y, Yoshioka T, Hanagata N, Tanaka J (2010) Thermal expansion of type A carbonate apatite. Mater Sci Eng B 173:171–175