Adsorption properties of H2O2 trapped inside a boron phosphide nanotube

Mohammad T. Baei1, Ali Varasteh Moradi2, Parviz Torabi3, Masoumeh Moghimi4
1Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
2Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
3Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
4Department of Chemistry, Gonbad Kavoos Branch, Islamic Azad University, Golestan, Iran

Tóm tắt

The behavior of H2O2 adsorbed inside a [4,4] armchair boron phosphide nanotube (BPNT) was studied by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. We present the nature of the H2O2 interactions inside the nanotube. The interaction between the guest species (H2O2) and the nanotube and the dipole moments of the different geometries are discussed. The results show that the binding energies and the dipole moments of the nanotube depend on the orientation and location of the H2O2 inside the tube. Among the parallel orientation (AT) and perpendicular orientations (PTA and PTP), the PTA and PTP geometries of the H2O2 are unstable whereas the AT-state geometries show stabilization of the guest species inside the BPNT. For AT orientations, the value of the dihedral angle of the H2O2 trapped inside the BPNT in the most stable conformation displays a notable change with respect to free H2O2. Also, with change of tube type, more efficient binding could not be achieved, and only the orientation and location of the H2O2 inside the tube play an important role in determining the binding energy. The polarization of the BPNT in the presence of the guest species in the PT state is higher than that of the AT state. Adsorption of H2O2 in the AT state slightly reduces the energy gap of the pristine BPNTs and slightly increases their electrical conductance.

Tài liệu tham khảo

Ijima S (1991) Nature 354:56 Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773 Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127 Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079 Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187 Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179 Zhang M, Su ZM, Yan LK, Qiu YQ, Chen GH, Wang RS (2005) Chem Phys Lett 408:145 Erkoc S (2001) J Mol Struct (Theochem) 542:89 Mirzaei M (2009) Physica E 41:883 Mirzaei M (2009) Z Phys Chem 223:815 Gunn K, Yeonju K, Jisoon I (2005) Chem Phys Lett 415:279 Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G (2004) Proc Natl Acad Sci USA 101:17002 Ramachandran CN, Sathyamurthy N (2005) Chem Phys Lett 410:348 Shameema O, Ramachandran CN, Sathyamurthy N (2006) J Phys Chem A 110:2 Koput J (1986) J Mol Spectrosc 115:438 Redington RL, Oslon WB, Cross PC (1962) J Chem Phys 36:1311 Khachkuruzov GA, Przhevalskii IN (1974) Opt Spectrosc 36:172 Flaud JM, Peyret CC, Johns JWC, Carli B (1989) J Chem Phys 91:1504 Harding LB (1989) J Phys Chem 93:8004 Aquilanti V, Maciel GS (2006) Origins Life Evol Biospheres 36:435 Song L, Liu M, Wu W, Zhang Q, Mo Y (2005) J Chem Theor Comp 1:394 Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2006) Chem Phys Lett 432:383 Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) J Phys Chem A 111:12604 Maciel GS, Bitencourt ACP, Ragni M, Aquilanti V (2007) Int J Quantum Chem 107:2697 Barreto PRP, Vilela AFA, Lombardi A, Maciel GS, Palazzetti F, Aquilanti V (2007) J Phys Chem A 111:12754 Bitencourt ACP, Ragni M, Maciel GS, Aquilanti V, Prudente FV (2008) J Chem Phys 129:154316 Elango M, Parthasarathi R, Subramanian V, Ramachandran CN, Sathyamurthy N (2006) J Phys Chem A 110:6294 Williams CI, Whitehead MA, Pang L (1993) J Phys Chem 97:11652 Ramachandran CN, Fazio DD, Sathyamurthy N, Aquilanti V (2009) Chem Phys Lett 473:146 Baei MT, Moghimi M (2011) Fullerenes, Nanotubes, Carbon Nanostruct. doi:10.1080/1536383X.2010.542595 (in press) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B03. Gaussian Inc., Pittsburgh