Plant Recombinant Human Collagen Type I Hydrogels for Corneal Regeneration

Michel Haagdorens1,2, Elle Edin3,4,5, Per Fagerholm6, Marc Groleau4,5, Zvi Shtein7,8, Artūras Ulčinas9, Amit Yaari7,8, Ayan Samanta10, Vytautas Cepla9,11, Aneta Liszka6, Marie-José Tassignon1,2, Fiona Simpson3,4,5, Oded Shoseyov7,8,12, Ramūnas Valiokas9, Isabel Pintelon13, Monika Kozak Ljunggren6, May Griffith3,4,5
1Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Antwerp, Belgium
2Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium
3Department of Ophthalmology and Institute of Biomedical Engineering, University of Montreal, Quebec, Canada
4Maisonneuve-Rosemont Hospital Research Centre, Quebec, Canada
5CHUM Research Centre, Quebec, Canada
6Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
7The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
8The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
9Department of Nanoengineering, Center for Physical Sciences and Technology, Vilnius, Lithuania
10Department of Chemistry–Ångström Laboratory, Uppsala, Sweden
11Ferentis UAB, Vilnius, Lithuania
12CollPlant Ltd., Ness-Ziona, Israel
13Laboratory of Cell Biology and Histology, Antwerp University, Antwerp, Belgium

Tóm tắt

To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.

Tài liệu tham khảo

Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134(2):167–73. https://doi.org/10.1001/jamaophthalmol.2015.4776. Holak SA, Holak HM, Bleckmann H. AlphaCor keratoprosthesis: postoperative development of six patients. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2009;247(4):535–9. https://doi.org/10.1007/s00417-008-0964-7. Zerbe BL, Belin MW, Ciolino JB, Boston Type 1 Keratoprosthesis Study G. Results from the multicenter Boston Type 1 Keratoprosthesis Study. Ophthalmology. 2006;113(10):1779.e1-7. https://doi.org/10.1016/j.ophtha.2006.05.015. Casey TA. Osteo-odonto-keratoprosthesis. Proc R Soc Med. 1966;59(6):530–1. Schrage N, Hille K, Cursiefen C. Aktuelle Versorgungsmöglichkeiten mit Keratoprothesen. Ophthalmologe. 2014;111(11):1010–8. https://doi.org/10.1007/s00347-013-3009-5. Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives. Tissue Eng B Rev. 2015;21(3):278–87. https://doi.org/10.1089/ten.TEB.2014.0397. Griffith M, Alarcon EI, Brunette I. Regenerative approaches for the cornea. J Intern Med. 2016;280(3):276–86. https://doi.org/10.1111/joim.12502. Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46ra61. https://doi.org/10.1126/scitranslmed.3001022. Yang C, Hillas P, Tang J, Balan J, Notbohm H, Polarek J. Development of a recombinant human collagen-type III based hemostat. J Biomed Mater Res Part B Appl Biomater. 2004;69(1):18–24. https://doi.org/10.1002/jbm.b.20030. Vuorela A, Myllyharju J, Nissi R, Pihlajaniemi T, Kivirikko KI. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 1997;16(22):6702–12. https://doi.org/10.1093/emboj/16.22.6702. Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, Avraham T, et al. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules. 2009;10(9):2640–5. https://doi.org/10.1021/bm900571b. Abir R, Stav D, Taieb Y, Gabbay-Benziv R, Kirshner M, Ben-Haroush A, et al. Novel extra cellular-like matrices to improve human ovarian grafting. J Assist Reprod Genet. 2020;37(9):2105–17. https://doi.org/10.1007/s10815-020-01832-4. Andrée B, Ichanti H, Kalies S, Heisterkamp A, Strauß S, Vogt P-M, et al. Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Sci Rep. 2019;9(1):5437. https://doi.org/10.1038/s41598-019-41985-6. Haagdorens M, Cėpla V, Melsbach E, Koivusalo L, Skottman H, Griffith M, et al. In vitro cultivation of limbal epithelial stem cells on surface-modified crosslinked collagen scaffolds. Stem Cells Int. 2019;2019:7867613–7. https://doi.org/10.1155/2019/7867613. Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL. Development of a novel collagen–GAG nanofibrous scaffold via electrospinning. Mater Sci Eng C. 2007;27(2):262–6. https://doi.org/10.1016/j.msec.2006.05.010. Torbet J, Malbouyres M, Builles N, Justin V, Roulet M, Damour O, et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials. 2007;28(29):4268–76. https://doi.org/10.1016/j.biomaterials.2007.05.024. Zakaria N, Koppen C, Van Tendeloo V, Berneman Z, Hopkinson A, Tassignon MJ. Standardized limbal epithelial stem cell graft generation and transplantation. Tissue Eng Part C, Methods. 2010;16(5):921–7. https://doi.org/10.1089/ten.TEC.2009.0634. Van den Bogerd B, Ní Dhubhghaill S, Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J Tissue Eng Regen Med. 2018;12(4):2020–8. https://doi.org/10.1002/term.2633. Koulikovska M, Rafat M, Petrovski G, Veréb Z, Akhtar S, Fagerholm P, et al. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique. Tissue Eng A. 2015;21(5-6):1116–30. https://doi.org/10.1089/ten.tea.2014.0562. Dravida S, Gaddipati S, Griffith M, Merrett K, Lakshmi Madhira S, Sangwan VS, et al. A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med. 2008;2(5):263–71. https://doi.org/10.1002/term.91. McTiernan CD, Simpson FC, Haagdorens M, Samarawickrama C, Hunter D, Buznyk O, et al. LiQD Cornea: Pro-regeneration collagen mimetics as patches and alternatives to corneal transplantation. Sci Adv. 2020;6(25):eaba2187. https://doi.org/10.1126/sciadv.aba2187. Jangamreddy JR, Haagdorens MKC, Islam MM, Lewis P, Samanta A, Fagerholm P, et al. Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater. 2018;69:120–30. https://doi.org/10.1016/j.actbio.2018.01.011. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A. 2004;58(2):167–76. https://doi.org/10.1002/cyto.a.20022. Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res. 2020;198:108137. https://doi.org/10.1016/j.exer.2020.108137. Merrett K, Liu W, Mitra D, Camm KD, McLaughlin CR, Liu Y, et al. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials. 2009;30(29):5403–8. https://doi.org/10.1016/j.biomaterials.2009.06.016. Islam MM, Cėpla V, He C, Edin J, Rakickas T, Kobuch K, et al. Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater. 2015;12:70–80. https://doi.org/10.1016/j.actbio.2014.10.035. Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, et al. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials. 2009;30(8):1551–9. https://doi.org/10.1016/j.biomaterials.2008.11.022. Islam MM, Ravichandran R, Olsen D, Ljunggren M, Fagerholm P, Lee CJ, et al. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv. 2016;6(61):55745–9. https://doi.org/10.1039/C6RA08895C. Rafat M, Xeroudaki M, Koulikovska M, Sherrell P, Groth F, Fagerholm P, et al. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials. 2016;83:142–55. https://doi.org/10.1016/j.biomaterials.2016.01.004. Tidu A, Ghoubay-Benallaoua D, Lynch B, Haye B, Illoul C, Allain JM, et al. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomater. 2015;22:50–8. https://doi.org/10.1016/j.actbio.2015.04.018. Spoerl E, Wollensak G, Reber F, Pillunat L. Cross-linking of human amniotic membrane by glutaraldehyde. Ophthalmic Res. 2004;36(2):71–7. https://doi.org/10.1159/000076884. Koh LB, Islam MM, Mitra D, Noel CW, Merrett K, Odorcic S, et al. Epoxy cross-linked collagen and collagen-laminin Peptide hydrogels as corneal substitutes. J Funct Biomater. 2013;4(3):162–77. https://doi.org/10.3390/jfb4030162. Deng C, Li F, Hackett JM, Chaudhry SH, Toll FN, Toye B, et al. Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater. 2010;6(1):187–94. https://doi.org/10.1016/j.actbio.2009.07.027. Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci. 2008;49(9):3887–94. https://doi.org/10.1167/iovs.07-1348. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29(9):1147–58. https://doi.org/10.1016/j.biomaterials.2007.11.011. van Essen TH, van Zijl L, Possemiers T, Mulder AA, Zwart SJ, Chou CH, et al. Biocompatibility of a fish scale-derived artificial cornea: cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity. Biomaterials. 2016;81:36–45. https://doi.org/10.1016/j.biomaterials.2015.11.015. Rieder E, Steinacher-Nigisch A, Weigel G. Human immune-cell response towards diverse xenogeneic and allogeneic decellularized biomaterials. Int J Surg. 2016;36(Pt A):347e51. https://doi.org/10.1016/j.ijsu.2016.06.042. Silvipriya K, Kumar K, Bhat A, Kumar B, John A, Lakshmanan P. Collagen: animal sources and biomedical application. J Appl Pharm Sci. 2015;5:123–7. https://doi.org/10.7324/JAPS.2015.50322. Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39. https://doi.org/10.1016/J.ADDR.2014.11.015. Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society. 2014;22(1):14–22. https://doi.org/10.1111/wrr.12119. Kochegarov A, Lemanski LF. New trends in heart regeneration: a review. J Stem Cells Regen Med. 2016;12(2):61–8. https://doi.org/10.46582/jsrm.1202010. Prescott HP. Tobacco, and its adulterations. Lancet. 1853;62(1561):103–7. https://doi.org/10.1016/S0140-6736(02)39999-9.