Solution-processed annealing-free ZnO nanoparticles for stable inverted organic solar cells

Organic Electronics - Tập 15 - Trang 1035-1042 - 2014
Salima Alem1, Jianping Lu1, Raluca Movileanu1, Terho Kololuoma1,2, Afshin Dadvand1, Ye Tao1
1Information and Communications Technologies Portfolio, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
2Printed Functional Solutions, VTT Technical Research Centre of Finland, Kaitovayla 1, 90570 Oulu, Finland

Tài liệu tham khảo

Green, 2013, Solar cell efficiency tables (version 41), Prog. Photovoltaics Res. Appl., 21, 1, 10.1002/pip.2352 You, 2013, A polymer tandem solar cell with 10.6% power conversion efficiency, Nat. Commun., 4, 1446, 10.1038/ncomms2411 Liang, 2010, For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 22, E135, 10.1002/adma.200903528 Chen, 2009, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 3, 649, 10.1038/nphoton.2009.192 Chu, 2012, Effects of the molecular weight and the side chain lengths on the photovoltaic performance of the dithienosilole/thienopyrrolodione copolymers, Adv. Funct. Mater., 22, 2345, 10.1002/adfm.201102623 Small, 2012, High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells, Nat. Photonics, 6, 115, 10.1038/nphoton.2011.317 Peet, 2007, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater., 6, 497, 10.1038/nmat1928 Lee, 2008, Processing additives for improved efficiency from bulk heterojunction solar cells, J. Am. Chem. Soc., 130, 3619, 10.1021/ja710079w Hoven, 2010, Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives, Adv. Mater., 22, E63, 10.1002/adma.200903677 Ma, 2005, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 15, 1617, 10.1002/adfm.200500211 Li, 2005, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater., 4, 864, 10.1038/nmat1500 Aïch, 2012, Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells, Org. Electron., 13, 1736, 10.1016/j.orgel.2012.05.001 He, 2012, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591, 10.1038/nphoton.2012.190 Kyaw, 2013, Efficient solution-processed small-molecule solar cells with inverted structure, Adv. Mater., 25, 2397, 10.1002/adma.201300295 Liao, 2012, Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction, J. Am. Chem. Soc., 134, 14271, 10.1021/ja303813s Yuan, 2011, Efficiency enhancement in organic solar cells with ferroelectric polymers, Nat. Mater., 10, 296, 10.1038/nmat2951 Zhang, 2007, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Adv. Mater., 19, 1835, 10.1002/adma.200602597 Liao, 2008, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett., 92, 173303, 10.1063/1.2918983 Cheng, 2012, Thermal-annealing-free inverted polymer solar cells using ZnO/Cs2CO3 bilayer as electron-selective layer, Sol. Energy Mater. Sol. Cells, 103, 164, 10.1016/j.solmat.2012.04.022 Brabec, 2002, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett., 80, 1288, 10.1063/1.1446988 Lee, 2008, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol, Appl. Phys. Lett., 92, 243308, 10.1063/1.2937844 Sun, 2011, Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-rerived ZnO film as an electron transport layer, Adv. Mater., 23, 1679, 10.1002/adma.201004301 Meyer, 2011, MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics, Adv. Mater., 23, 70, 10.1002/adma.201003065 Stubhan, 2012, High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer, Adv. Energy Mater., 12, 1433, 10.1002/aenm.201200330 Zilberberg, 2011, Inverted organic solar cells with sol–gel processed high work-function vanadium oxide hole-extraction layers, Adv. Funct. Mater., 21, 4776, 10.1002/adfm.201101402 Chu, 2012, High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability, Sol. Energy Mater. Sol. Cells, 96, 155, 10.1016/j.solmat.2011.09.042 Tan, 2013, Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer, ACS Appl. Mater. Interfaces, 5, 4696, 10.1021/am303004r AzizIbrahem, 2013, Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells, Sol. Energy Mater. Sol. Cells, 108, 156, 10.1016/j.solmat.2012.09.007 Krebs, 2008, A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air, Nanotechnology, 19, 424013, 10.1088/0957-4484/19/42/424013 Kahn, 2005, Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method, Adv. Funct. Mater., 15, 458, 10.1002/adfm.200400113 Beek, 2005, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells, J. Phys. Chem. B, 109, 9505, 10.1021/jp050745x Rhodes, 2010, Aggregation of zinc oxide nanoparticles: from non-aqueous dispersions to composites used as photoactive layers in hybrid solar cells, J. Colloid Interface Sci., 344, 261, 10.1016/j.jcis.2009.12.062 Pesika, 2002, Quenching of growth of ZnO nanoparticles by adsorption of octanethiol, J. Phys. Chem. B, 106, 6985, 10.1021/jp0144606 Sakohara, 1998, Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate, J. Phys. Chem. B, 102, 10169, 10.1021/jp982594m Hu, 2003, Influence of solvent on the growth of ZnO nanoparticles, J. Colloid Interface Sci., 263, 454, 10.1016/S0021-9797(03)00205-4 Shim, 2001, Organic-capped ZnO nanocrystals: synthesis and n-type character, J. Am. Chem. Soc., 123, 11651, 10.1021/ja0163321 Reese, 2011, Consensus stability testing protocols for organic photovoltaic materials and devices, Sol. Energy Mater. Sol. Cells, 95, 1253, 10.1016/j.solmat.2011.01.036