Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys

Jianglin Huang1, Nils Warnken1, Jean-Christophe Gebelin1, Martin Strangwood1, Roger C. Reed1
1Department of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham, UK

Tóm tắt

The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.

Tài liệu tham khảo

C. Leyens and M. Peters, Eds.: Titanium and Titanium Alloys-Fundamentals and Application, Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 2003 T. Mohandas, D. Banerjee, R. VVK, Metall. Mater. Trans. A, 30A, 789 (1999) N. Gouret, G. Dour, B. Miguet, E. Olliver, R. Fortunier, Metall. Mater. Trans. A, 35A, 879 (2004) H. Schultz, Electron Beam Welding. (Abington Publishing, Cambridge, UK, 1993) C.Y. Ho, J. Mater. Process. Technol., 167(2–3), 265 (2005) S.M. Gurevich, O.K. Nazarenko, V.N. Zamkov, V.E. Lokshin, A.D. Shevelev, Sci. Technol., 4, 2347 (1980) V.V. Redchits, Welding Int., 11(9), 722 (1997) M. Strangwood, Technical report, Department of Metallurgy and Materials, University of Birmingham, Birmingham, UK, 2007. H. Okamoto, J. Phase Equilib., 13, 443 (1992) W.E. Wang, J. Alloy Compd., 238, 6 (1996) T. Kasajima, T. Nishikiori, T. Nohira, Y. Ito, J. Electrochem. Soc., 150, E355 (2003) T. Nishikiori, T. Nohira, Y. Ito, J. Electrochem. Soc., 148, E127 (2001) D. Laser, J. Vacuum Sci. Technol., 20, 37 (1982) E. Konigsberger, G. Eriksson, W.A. Oates, J. Alloy Compd. 299, 148 (2000) O.S. Abdul-Hamid: Ph.D. Thesis, Massachusetts Institute of Technology. Cambridge, MA, 1993 H.J. Christ, M. Decker, S. Zeitler, J. Thermal Anal. Calorim. 55, 609 (1999) H.J. Christ, M. Decker, S. Zeitler, Metall. Mater. Trans. A, 31A, 1510 (2000) Y. Hirooka, M. Miyake, T. Sano, J. Nucl. Mater., 96, 227 (1981) M.E. Glicksman, Diffusion in Solids. (John Wiley & Sons, Inc., New York NY, 2000) O.T. Midling, Ø. Grong, Acta Metall. Mater., 42, 1595 (1993) L.I. Smirnow, Int. J. Hydrog. Energ., 24, 813 (1999) L. Luo, Y. Su, J. Guo, H. Fu, J. Alloy Compd., 425, 140 (2006) I. Katzarov, S. Malinov, V. Yanakieva, Acta Mater., 53, 3091 (2005) R. Sasikumar, M.J. Walker, S. Savithri, S. Sundarraj, Model. Simul. Mater. Sci. Eng., 16, 0350049 (2008) V. Pai, M. Favelukis, J. Cell. Plast., 38, 403 (2002) P. Wehr, J. Ruge, Schweissen Schneiden, 28(11), 411–14 (1976) A.F. Fishgoit, B.A. Kolachev, A.A. Mamaev, Y.M Shtemler, Welding Int., 7(3), 230–33 (1993) K.W. Westerberg, T.C. Meier, M.A. McClelland, D.G. Braun, L.V. Berzins, T.M. Anklam, and J. Storer: Electron Beam Melting and Refining State of the Art 1997 Conf., R. Bakish, ed., Bakish Materials Corp., Englewood, NJ, 1997 V.A. Silvinskii, V.N. Zamkov, G.S. Kirichenko, P.V. Poritskii, Paton Welding J., 6(5–6), 92 (1994)