Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006

Copernicus GmbH - Tập 9 Số 18 - Trang 7143-7160
Marc Mallet1,2,3, Pierre Tulet4,5, D. Serça1,2,3, F. Solmon1,2,3, Оleg Dubovik6, Jacques Pelon7, Véronique Pont1,2,3, O. Thouron4
1CNRS, LA (Laboratoire d'Aérologie), 31400 Toulouse, France
2LA (Laboratoire d'Aérologie), 14 avenue Edouard Belin, 31400 Toulouse, France
3Université de Toulouse, UPS
4CNRM/GAME, METEO-France, 42 av G. Coriolis, 31047, Toulouse, France
5LACy, Université de La Réunion, 15 avenue René Cassin, 97715 Saint-Denis, France
6Laboratoire d'Optique de l'Atmosphère, Université des Sciences et Technologies de Lille, CNRS, Villeneuve d'Ascq, France
7LATMOS, Institut Pierre Simon Laplace, Paris, France

Tóm tắt

Abstract. The present work analyses the effect of dust aerosols on the surface and top of atmosphere radiative budget, surface temperature, sensible heat fluxes, atmospheric heating rate and convective activity over West Africa. The study is focused on the regional impact of a major dust event over the period of 7–14 March 2006 through numerical simulations performed with the mesoscale, nonhydrostatic atmospheric model MesoNH. Due to its importance on radiative budgets, a specific attention has been paid to the representation of dust single scattering albedo (SSA) in MesoNH by using inversions of the AErosol RObotic NETwork (AERONET). The radiative impacts are estimated using two parallel simulations, one including radiative effects of dust and the other without them. The simulations of dust aerosol impacts on the radiative budget indicate remarkable instantaneous (at midday) decrease of surface shortwave (SW) radiations over land, with regional (9°–17° N, 10° W–20° E) mean of −137 W/m2 during the 9 to 12 March period. The surface dimming resulting from the presence of dust is shown to cause important reduction of both surface temperature (up to 4°C) and sensible heat fluxes (up to 100 W/m2), which is consistent with experimental observations. At the top of the atmosphere, the SW cooling (regional mean of −12.0 W/m2) induced by mineral dust is shown to dominate the total net (shortwave + longwave) effect. The maximum SW heating occurs within the dusty layer with values comprised between 4 and 7° K by day and LW effect results in a cooling of −0.10/−0.20° K by day. Finally, the simulations suggest the decrease of the convective available potential energy (CAPE) over the region in the presence of mineral dust.

Từ khóa


Tài liệu tham khảo

Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M. A.: The direct radiative effect of biomass burning aerosols over southern Africa, Atmos. Chem. Phys., 5, 1999–2018, 2005.

Affre, C., Lopez, A., Carrara, A., Druilhet, A., and Fontan, J.: The analysis of energy and ozone flux data from the LANDES~94 experiment, Atmos. Environ. 2000, 34, 803–821, 2000.

Bellouin, N., Boucher, O., Vesperini, M., and Tanre, D.: Estimating the direct aerosol radiative perturbation: Impact of ocean surface representation and aerosol non-sphericity, Q. J. Roy. Meteorol. Soc., 130, 2217–2232, 2004.

Beverland, I. J., Moncrieff, J. B., Ónéill, C., Hargreaves, K. J., and Milne, R.: Measurement of methane and carbon dioxide fluxes from peatland ecosystems by the conditional-sampling technique, Q. J. Roy. Meteorol. Soc., 122, 819–838, 1996.

Bharmal, N. A., Slingo, A., Robinson, G. J., and Settle, J. J.: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment, in press in JGR Atmosphere, 2009.

Bierwirth, E., Wendisch, M., Ehrlich, A., et al.: Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust, Tellus, 61B, 252–269, https://doi.org/10.1111/j.1600-0889.2008.00395, 2009.

Derimian, Y., Léon, J.-F., Dubovik, O., et al.: Radiative properties of aerosol mixture observed during the dry season 2006 over M'Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign), J. Geophys. Res., 113, D00C09, https://doi.org/10.1029/2008JD009904, 2008.

Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000.

Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, 2002.

Dubovik, O., Sinyuk, A., Lapyonok, T., et al.: Application of light scattering by spheroids for accounting for particle non-sphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619d, 2006.

Dufresne, J. L., Gautier, C., Ricchiazzi, P., and Fouquart, Y.: Longwave Scattering Effects of Mineral Aerosols, J. Atmos. Sci., 59, 1959–1966, 2002.

Eck, T. F., Holben, B. N., Reid, J. S., et al.: Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer, J. Geophys. Res., 113, D01204, https://doi.org/10.1029/2007JD008944, 2008.

Fan, J., Zhang, R., Tao, W.-K., and Mohr, K. I.: Effects of aerosol optical properties on deep convective clouds and radiative forcing, J. Geophys. Res., 113, D08209, https://doi.org/10.1029/2007JD009257, 2008.

Feingold, G., Jiang, H., and Harrington, Y.: On smoke suppression of clouds in Amazonia, Geophys. Res. Lett., 32, L02804, https://doi.org/10.1029/2004GL021369, 2005.

Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest Meteorol., 78, 83–105, 1996.

Fouquart, Y. and Bonnel, B.: Computation of solar heating of the Earth's atmosphere: A new parametrization, Cont. Atmos. Phys., 53(1), 35–62, 1980.

Fraser, R. S. and Kaufman, Y.: The relative importance of scattering and absorption in remote Sensing, IEEE T. Geosci. Remote, 23, 625–633, 1985.

Grini, A., Tulet, P., and Gomes, L.: Dusty weather forecasts using the MesoNH mesoscale atmospheric model, J. Geophys. Res., 111, D19205, https://doi.org/10.1029/2005JD007007, 2006.

Haywood, J. M. and Shine, K. P.: The effect of anthropogenic sulphate and soot on the clear-sky planetary radiation budget, Geophys. Res. Lett., 22, 603–606, 1995.

Haywood, J. M., Francis, P., Osborne, S., et al.: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE~: 1, Solar spectrum, J. Geophys. Res., 108(D18), 8577, https://doi.org/10.1029/2002JD002687, 2003.

Haywood, J. M., Allan, R. P., Culverwell, I., Slingo, T., Milton, S., Edwards, J., and Clerbaux, N.: Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?, J. Geophys. Res., 110, D05105, https://doi.org/10.1029/2004JD005232, 2005.

Haywood, J. M., Pelon, J., Formenti, P., et al.: Overview of the dust and Biomass Burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0, J. Geophys. Res., 113, D00C17, https://doi.org/10.1029/2008JD010077, 2008.

Heinold, B., Tegen, I., Esselborn, M., et al.: Regional Saharan dust modelling during the SAMUM~2006 campaign. Tellus, 61B, 307–324, https://doi.org/10.1111/j.1600-0889.2008.00387, 2009.

Helmert, J., Heinold, B., Tegen, I., Hellmuth, O., and Wendisch, M.: On the direct and semidirect effects of Saharan dust over Europe: A modeling study, J. Geophys. Res., 112, D13208, https://doi.org/10.1029/2006JD007444, 2007.

Hess, M., Koepke, P., and Schult, I.: Optical properties of aerosols and clouds: The software package, B. Am. Meteorol. Soc., 79, 831–844, 1998.

Huebert, B. J., Bates, T., Russell, P. B., Shi, G., Kim, Y. J., Kawamura, K., Carmichael, G., and Nakajima, T.: An overview of Ace-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res., 108(D23), 8633, https://doi.org/10.1029/2003JD003550, 2003.

Jiang, H. and Feingold, G.: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model, J. Geophys. Res., 111, D01202, https://doi.org/10.1029/2005JD006138, 2006.

Kim, S.-W., Yoon, S.-C., Jefferson, A., et al.: Observation of enhanced water vapour in Asian dust layer and its effect on atmospheric radiative heating rates, Geophys. Res. Lett., 31, L18113, https://doi.org/10.1029/2004GL020024, 2004.

Koepke, P., Hess, M., Schult, I., and Shettle, E. P.: Global Aerosol Data Set, MPI Meteorologie Hamburg, Report No 243, 44pp., 1997.

Konaré, A., Zakey, A. S., Solmon, F., Giorgi, F., Rauscher, S., Ibrah, S., and Bi, X.: A regional climate modeling study of the effect of desert dust on the West African monsoon, J. Geophys. Res., 113, D12206, https://doi.org/10.1029/2007JD009322, 2008.

Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S., and Gaudichet, A.: Characterization of iron oxides in mineral dust aerosols: Implications for light absorption, J. Geophys. Res., 111, D21207, https://doi.org/10.1029/2005JD007016, 2006.

Lafore, J., Stein, J., Asencio, N., et al.: The Meso-NH atmospheric simulation system, Part~I: Adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, 1998.

Lau, K.-M. and Kim, K.-M.: Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophys. Res. Lett., 33, L21810, https://doi.org/10.1029/2006GL027546, 2006.

Lelieveld, J., Berresheim, H., Borrmann, S., et al.: Global Air Pollution Crossroads over the Mediterranean, Science, 298, 794, 2002.

Lio, H. and Seinfeld, J. H.: Radiative forcing by mineral dust aerosols: sensitivity to key variables, J. Geophys. Res., 103(D24), 31637–31645, 1998.

Mallet, M., Pont, V., Liousse, C., et al.: Aerosol direct radiative forcing over Djougou (northern Benin) during the African Monsoon Multidisciplinary Analysis dry season experiment (Special Observation Period-0), J. Geophys. Res., 113, D00C01, https://doi.org/10.1029/2007JD009419, 2008.

McFarlane, S. A., Kassianov, E. I., Barnard, J., et al.: Surface shortwave aerosol radiative forcing during the Atmospheric Radiation Measurement Mobile Facility deployment in Niamey, Niger, J. Geophys. Res., 114, D00E06, https://doi.org/10.1029/2008JD010491, 2009.

Marticorena, B., Bergametti, G., Aumont, B., Callot, Y., N'Doumé, C., and Legrand, M.: Modeling the atmospheric dust cycle: 2-Simulation of Saharan sources, J. Geophys. Res., 102, 4387–4404, 1997.

McConnell, C. L., Highwood, E. J., Coe, H., et al.: Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) Experiment, J. Geophys. Res., 113, D14S05, https://doi.org/10.1029/2007JD009606, 2008.

Miller, R. L. and Tegen, I.: Climate response to soil dust aerosols, J. Climate, 11, 3247–3267, 1998.

Miller, R. L., Tegen, I., and Perlwitz, J.: Surface radiative forcing by soil dust aerosols and the hydrologic cycle, J. Geophys. Res., 109, D04203, https://doi.org/10.1029/2003JD004085, 2004.

Miller, R. L., Slingo, A., Barnard, J. C., and Kassianov, E.: Seasonal contrast in the surface energy balance of the Sahel, J. Geophys. Res., 114, D00E05, https://doi.org/10.1029/2008JD010521, 2009.

Milton, S. F., Greed, G., Brooks, M. E., Haywood, J., Johnson, B., Allan, R. P., Slingo, A., and Grey, M. F.: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo, J. Geophys. Res., 113, D00C02, https://doi.org/10.1029/2007JD009741, 2008.

Mishchenko, M. I., Lacis, A. A., Carlson, B. E., and Travis, L. D.: Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling, Geophys. Res. Lett., 22, 1077–1080, 1995.

Mohalfi, S., Bedi, H. S., Krishnamurti, T. N., and Cocke, S. D.: Impact of Shortwave Effects on the Summer Season Heat Low over Saudi Arabia, Monthly Weather Review, 126, 3153–3168, 1998.

Morcrette, J. and Fouquart, Y.: The overlapping of cloud layers in shortwave radiation parameterizations, J. Atmos. Sci., 43(4), 321–328, 1986.

Myhre, G. and Stordal, F.: Global sensitivity experiments of the radiative forcing due to mineral aerosols, J. Geophys. Res., 106(D16), 18193–18204, 2001.

Osborne, S. R., Johnson, B. T., Haywood, J. M., Baran, A. J., Harrison, M. A. J., and McConnell, C. L.: Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment, J. Geophys. Res., 113, D00C03, https://doi.org/10.1029/2007JD009551, 2008.

Otto, S., Bierwirth, E., Weinzierl, B., et al.: Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles, Tellus, 61B, 270–296, https://doi.org/10.1111/j.1600-0889.2008.00389, 2009.

Pelon, J., Mallet, M., Mariscal, A., et al.: Microlidar observations of biomass burning aerosol over Djougou (Benin) during African Monsoon Multidisciplinary Analysis Special Observation Period~0: Dust and Biomass-Burning Experiment, J. Geophys. Res., 113, D00C18, https://doi.org/10.1029/2008JD009976, 2008.

Prospero, J. M. and Lamb, P. J.: African droughts and dust transport to the Caribbean: Climate change implications, Science, 302, 1024–1027, 2003.

Ramanathan, V., Crutzen, P. J., Lelieveld, J., et al.: Indian Ocean Experiment, An integrated analysis of the climate forcing and effects of the great Indo-Asian haze, J. Geophys. Res., 106(D22), 28371–28398, 2001.

Ramanathan , V., Li, F., Ramana, M. V., et al.: Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing, J. Geophys. Res., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.

Redelsperger, J., Thorncroft, D., Diedhiou, A., Lebel, T., Parker, D., and Polcher, J.: African monsoon multiplidisciplinary analysis: An international research project and field campaign, B. Am. Meteorol. Soc., 87, 1739–1746, 2006.

Slingo, A., Ackerman, T. P., Allan, R. P., et al.: Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance, Geophys. Res. Lett., 33, L24817, https://doi.org/10.1029/2006GL027869, 2006.

Solmon, F., Mallet, M., Elguindi, N., Giorgi, F., Zakey, A., and Konaré, A.: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties, Geophys. Res. Lett., 35, L24705, https://doi.org/10.1029/2008GL035900, 2008.

Sinyuk, A., Dubovik, O., Holben, B., et al.: Simultaneous retrieval of aerosol and surface properties from a combinaison of AERONET and satellite data, Remote Sens. Environ., 107, \\mbox90–108, 2007.

Tanré, D., Haywood, J. M., Pelon, J., Léon, J. F., Chatenet, B., Formenti, P., Francis, P., Goloub, P., Highwood, E. J., and Myhre, G.: Measurements and modelling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE), J. Geophys. Res., 108(D18), 8574, https://doi.org/10.1029/2002JD003273, 2003.

Tegen, I. and Lacis, A. A.: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res., 101(D14), 19237–19244, 1996.

Tulet, P., Crassier, V., Cousin, F., Suhre, K., and Rosset, R.: ORILAM, a three-moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso-NH-C model and validation on the Escompte campaign, J. Geophys. Res., 110, D18201, https://doi.org/10.1029/2004JD005716, 2005.

Tulet, P., Mallet, M., Pont, V., Pelon, J., and Boon, A.: The 7–13~March~2006 dust storm over West Africa: Generation, transport, and vertical stratification, J. Geophys. Res., 113, D00C08, https://doi.org/10.1029/2008JD009871, 2008.

Wendisch, M., Hellmuth, O., Ansmann, A., et al.: Radiative and dynamic effects of absorbing aerosol particles over the Pearl River Delta, China, Atmos. Environ., 42, 6408–6416, 2008.

Woodward, S.: Modeling the atmospheric life-cycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, 18155–18166, 2001.

Yoshioka, M., Mahowald, N. M., Conley, A. J., et al.: Impact of Desert Radiative Forcing on Sahel Precipitation : Relative Importance of Dust Compared to Sea Surface Temperature Variations, Vegetation Changes, and Greenhouse Gas Warming, J. Climate, 20, 1445–1467, https://doi.org/10.1175/JCLI4056.1, 2007.