Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst
Tài liệu tham khảo
Lopez, 2009, Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts, Catal. Today, 148, 103, 10.1016/j.cattod.2009.04.001
Wu, 2008, F-doped flower-like TiO2 nanostructures with high photocatalytic activity, Langmuir, 24, 3503, 10.1021/la703098g
Wu, 2008, Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications, J. Photochem. Photobiol. A: Chem., 195, 47, 10.1016/j.jphotochem.2007.09.005
Munoz, 2007, Semiconducting properties of self-organized TiO2 nanotubes, Electrochim. Acta, 52, 4167, 10.1016/j.electacta.2006.11.035
Zhang, 2005, The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution, J. Photochem. Photobiol. A: Chem., 170, 279, 10.1016/j.jphotochem.2004.09.001
Hou, 2006, Effect of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions, Electrochim. Acta, 51, 6258, 10.1016/j.electacta.2006.04.008
Salari, 2009, Synthesis of TiO2 nanoparticles via a novel mechanochemical method, J. Alloy. Compd., 469, 386, 10.1016/j.jallcom.2008.01.112
Li, 2009, Ethylene glycol-mediated synthesis of nanoporous anatase TiO2 rods and rutile TiO2 self-assembly chrysanthemums, J. Alloy. Compd., 471, 477, 10.1016/j.jallcom.2008.03.137
Yanga, 2010, Diameter-controlled growth of TiO2 nanotube arrays by anodization and its photoelectric property, J. Alloy. Compd., 492, L33, 10.1016/j.jallcom.2009.11.112
Armon, 2004, Disinfection of Bacillus spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis, Water Sci. Technol., 4, 7
Ohko, 2003, TiO2 film loaded with silver nanoparticles: control of multicolor photochoromic behavior, Nat. Mater., 2, 29, 10.1038/nmat796
Bozzi, 2005, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiaton at ambient temperature, J. Photochem. Photobiol.: A, 172, 27, 10.1016/j.jphotochem.2004.11.010
Mor, 2006, A review on higly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy application, Sol. Energy Mater. Sol. Cells, 90, 2011, 10.1016/j.solmat.2006.04.007
Garzella, 2000, TiO2 thin films by a novel sol–gel processing for gas sensor applications, Sens. Actuators: B., 68, 189, 10.1016/S0925-4005(00)00428-7
Bavykin, 2005, Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes, J. Phys. Chem. B, 109, 19422, 10.1021/jp0536394
Pillai, 2006, Electrochemical storage of hydrogen in nanotubular TiO2 arrays, J. Power Sources, 161, 524, 10.1016/j.jpowsour.2006.03.088
Imai, 1999, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, J. Mater. Chem., 9, 2971, 10.1039/a906005g
Jung, 2002, Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template, Chem. Mater., 14, 1445, 10.1021/cm011625e
Tian, 2003, Large oriented arrays and continuous films of TiO2-based nanotubes, J. Am. Chem. Soc., 125, 12384, 10.1021/ja0369461
Peng, 2004, Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone, J. Mater. Chem., 14, 2542, 10.1039/b404750h
Li, 2011, In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method, Mater. Lett., 65, 1188, 10.1016/j.matlet.2011.01.038
Tang, 2008, Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry, J. Am. Chem. Soc., 130, 13885, 10.1021/ja8034637
Zhao, 1998, Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol., 32, 2394, 10.1021/es9707926
Sakthivel, 2004, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res., 38, 3001, 10.1016/j.watres.2004.04.046
Xin, 2005, Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B, 109, 2805, 10.1021/jp0469618
Zang, 1998, Amorphous microporous titania modified with platinum(IV) chloride–a new type of hybrid photocatalyst for visible light detoxification, J. Phys. Chem. B, 102, 10765, 10.1021/jp981755j
Subramanian, 2001, Semiconductor–metal composite nanostructures. To what extent metal nanoparticles (Au, Pt, Ir) improve the photocatalytic activity of TiO2 films, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k
Chand, 2011, Enhanced photocatalytic activity of TiO2/SiO2 by the influence of Cu-doping under reducing calcination atmosphere, Catal. Commun., 13, 49, 10.1016/j.catcom.2011.04.024
Li, 2014, A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: nanoflowers on a nanotube bed, Nano Res., 7, 1007, 10.1007/s12274-014-0464-5
Xu, 1998, Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system, J. Chem. Soc. Faraday Trans., 94, 1905, 10.1039/a801603h
Rahman, 2012, Selective Iron(III) ion uptake using CuO–TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry, Chem. Cent. J., 6, 158, 10.1186/1752-153X-6-158
Chusuei, 1999, Correlation of relative x-ray photoelectron spectroscopy shake-up intensity with CuO particle size, Langmuir, 15, 2806, 10.1021/la9815446
Palgrave, 2009, Nitrogen diffusion in doped TiO2 (110) single crystals: a combined XPS and SIMS study, J. Mater. Chem., 19, 8418, 10.1039/b913267h
Liu, 2014, An energy-efficient electrochemical method for CuO–TiO2 nanotube array preparation with visible-light responses, Acta Metall. Sin., 27, 149, 10.1007/s40195-013-0013-3
Su, 2008, A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity, Appl. Surf. Sci., 255, 2167, 10.1016/j.apsusc.2008.07.053
Xu, 2011, Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water, Int. J. Hydrog. Energy, 36, 6538, 10.1016/j.ijhydene.2011.03.047
Momeni, 2015, Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts, J. Mater. Sci: Mater. Electron., 26, 1560