Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm

International Materials Reviews - Tập 61 Số 1 - Trang 20-45 - 2016
Alok Kumar, K. C. Nune, L.E. Murr, R.D.K. Misra

Tóm tắt

We elucidate here process–structure–property relationships in implantable biomaterials processed by rapid prototyping approaches that are based on the principle of additive manufacturing. The conventional methods of fabrication of biomedical devices including freeze casting and sintering are limited because of difficulties in adaptation at the host site and mismatch in micro/macrostructure, mechanical and physical properties with the host tissue. Moreover, additive manufacturing has the advantage of fabricating patient-specific designs, which can be obtained from the computed tomography scan of the defect site. The discussion here comprises two parts – the first part briefly describes the evolution and underlying reasons that have led to 3D printing of scaffolds for tissue regeneration. The second part focuses on biocompatibility and mechanical properties of 3D scaffolds, fabricated by different approaches. The article concludes with a discussion on functionally graded scaffolds and vascularisation of 3D porous scaffolds that are envisaged to meet the requirements of the biomedical industry. In general, the mechanical properties of 3D printed scaffolds are governed by pore architecture, pore volume and percentage porosity. To ensure long-term endurance and the ability to withstand abrupt impact, it is important that the fabricated materials have a good combination of strength and energy absorption capability. While scaffolds with high interconnected porosity are preferred for tissue regeneration, such structures lack adequate mechanical strength and energy absorption capability. These mutually opposing requirements of high porosity and mechanical strength in conjunction with high energy absorption have hindered the application of 3D scaffolds as biomedical devices. In this regard, functionally graded 3D structures with high strength and energy absorption are potentially attractive for biomedical devices.

Từ khóa


Tài liệu tham khảo

10.1108/RPJ-12-2013-0123

10.1136/bjophthalmol-2013-304446

10.1016/j.medengphy.2015.01.004

10.1016/j.jcms.2010.01.009

10.1002/adma.201400154

10.1039/C4TB00838C

10.1016/j.biomaterials.2004.01.047

10.1002/term.1

10.1242/jcs.079509

10.1016/j.copbio.2013.03.009

10.1039/b811392k

10.1038/nmat3101

10.1126/science.1169494

10.1038/nnano.2010.246

10.1038/nmeth.1671

10.1038/nmat2619

10.1093/rb/rbu016

10.2106/00004623-200703000-00026

10.1016/j.abb.2008.03.024

10.1016/j.jcms.2012.01.002

10.1016/j.actbio.2011.09.020

10.1038/nmat2441

10.1016/j.drudis.2014.04.017

10.1016/j.cell.2006.06.044

10.1073/pnas.94.25.13661

10.1038/nmat2316

10.1016/j.biomaterials.2005.02.002

10.1002/jbm.a.10582

10.1016/S0142-9612(01)00243-5

10.1016/S0142-9612(03)00359-4

10.1002/1097-4636(20001215)52:4<841::AID-JBM31>3.0.CO;2-3

10.1073/pnas.1017825108

10.1016/j.actbio.2013.08.022

10.1038/nm0911-1032

10.1016/j.tcm.2006.02.006

10.1089/ten.2007.0196

10.1016/j.biomaterials.2005.06.020

10.3390/bioengineering2010015

10.1016/j.biomaterials.2014.11.049

10.1088/1758-5082/6/2/025001

Pathiraja A., 2008, Eur. Cell. Mater., 5, 1

10.1007/s00449-010-0499-2

Tache A., 2004, Int. J. Oral. Maxillofac. Implants, 19, 19

10.1039/c3ra23315d

10.1016/j.actamat.2013.05.013

10.1002/jbm.a.35198

10.1155/2012/407805

10.1089/ten.tea.2006.0418

10.1007/s00339-008-4959-3

10.1038/nmat1683

10.1016/S0142-9612(00)00121-6

10.1089/ten.tea.2013.0513

Chen Q., 2008, Tissue Eng., 4, 1, 10.1089/ten.1998.4.1

10.1177/0883911508091905

10.1111/j.1601-6343.2005.00329.x

10.1097/00006534-197905000-00004

10.1016/j.biomaterials.2005.02.002

10.4028/www.scientific.net/MSF.250.151

10.1016/j.actbio.2008.06.021

10.1023/A:1008929305897

10.2174/1874764710801030213

10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C

10.1002/jbm.a.10564

10.1002/1097-4636(20010305)54:3<407::AID-JBM140>3.0.CO;2-C

10.1002/jbm.a.30022

10.1007/978-3-642-71031-5

10.1007/BF02973285

10.1016/S0883-5403(06)80102-6

10.1097/00003086-198806000-00002

10.7150/ijbs.7.112

10.1016/j.biomaterials.2007.09.003

10.1016/S0921-5093(03)00580-X

Xigeng M., 2010, Materials, 3, 26

10.1155/2012/245727

10.1016/j.biomaterials.2006.11.024

10.1002/jbm.820050613

10.1016/j.actbio.2005.12.007

10.1302/0301-620X.81B5.0810907

10.1002/1097-4636(2001)58:2<180::AID-JBM1005>3.0.CO;2-5

10.3390/ma2030790

10.1016/j.tibtech.2008.04.009

10.2174/092986710793205327

10.1038/nbt0705-821

10.1016/j.biomaterials.2013.09.078

10.1002/(SICI)1097-4636(19971205)37:3<413::AID-JBM12>3.0.CO;2-C

10.1016/j.biomaterials.2005.07.014

10.1016/j.biomaterials.2008.10.056

10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K

10.2106/00004623-199901000-00013

10.1034/j.1600-0501.2002.130304.x

10.1016/S0142-9612(01)00307-6

Story B. J., 1997, Int. J. Oral Maxillofac. Implants, 13, 749

10.1016/S0142-9612(99)00075-7

Takahashi Y., Tabata Y. ‘Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells’, J. Biomater. Sci. Polym. Ed., 2004, 15, (1), 41–57.

Kuboki Y., 2001, J. Bone Joint Surg., 83, S105

10.1093/oxfordjournals.jbchem.a021589

Yarlagadda P., 2005, Bio-Med. Mater. Eng., 15, 159

10.1038/74651

10.1089/ten.2006.12.2093

10.1002/bit.20038

10.1084/jem.138.4.745

10.1177/096368979500400413

10.1038/35025220

10.1016/j.biomaterials.2004.07.006

10.1002/(SICI)1097-4652(200004)183:1<74::AID-JCP9>3.0.CO;2-G

10.1002/jbm.a.20016

10.1016/j.tibtech.2004.05.005

10.1016/j.addr.2011.03.004

10.1016/S1369-7021(05)71222-0

Hutmacher D. W. ‘Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives’, J. Biomat. Sci. Polym. Ed., 2001, 12, (1), 107–124.

10.1002/aja.1000640203

10.1089/ten.2006.12.1721

10.22203/eCM.v015a08

10.1369/jhc.4A6250.2004

10.1002/jor.21340

Wernike E., 2010, Eur. Cell. Mater., 19

10.1302/0301-620X.42B2.367

10.1016/j.tibtech.2012.07.005

10.1089/ten.1997.3.149

10.1038/scientificamerican0499-60

Muller D., 2010, Stem. Cells Int., 2011

10.1002/mawe.200500968

10.1016/j.biomaterials.2006.07.034

10.1038/nbt0794-689

10.1142/2028

10.1007/978-3-540-74771-0_17

10.1023/B:JMSM.0000004006.90399.b4

Richart O., 2002, Key Eng. Mater., 218, 9

10.1016/j.actbio.2009.05.012

10.1016/j.actbio.2011.01.029

10.1002/jbm.a.35431

10.22203/eCM.v005a03

10.1016/j.mattod.2013.11.017

10.1023/A:1016189724389

10.1016/j.actbio.2010.09.039

10.1007/s11661-002-0109-2

10.1016/j.jmbbm.2007.07.001

10.1111/j.1532-849X.1999.tb00006.x

10.1016/j.jmbbm.2008.05.004

10.1016/j.msec.2006.11.004

Steven M., 1992, Massach. Inst. Tech., 28, 144

Chandrasekaran M., 2007, Proc. 3rd Int. Conf., 8, 1

10.1016/j.biomaterials.2005.05.046

10.1039/c2jm30566f

10.1002/jbm.b.30291

Muller B., 2009, Proc. SPIE, 7401, 1

10.1016/j.biomaterials.2008.06.012

10.1163/156856297X00588

10.1016/j.polymertesting.2008.05.001

10.1097/00000658-199807000-00002

10.1002/jbm.b.30469

10.1016/j.msec.2014.11.024

Ludmila N., 2012, Manuf. Ind. Eng., 11, 1338

10.1126/scitranslmed.3003720

10.1089/ten.teb.2009.0455

Probst F. A., 2010, Handchirurgie, Mikrochirurgie, Plastische Chirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Handchirurgie: Organ der Deutschsprachigen Arbeitsgemeinschaft fur Mikrochirurgie der Peripheren Nerven und Gefasse: Organ der V., 42, 369

10.1021/am502716t

10.1021/am508469h

10.1016/j.jmbbm.2011.05.010

10.1016/j.actbio.2014.06.010

10.1098/rsta.2010.0010

10.1007/s10856-006-0073-2

10.1021/bk-1987-0323.ch032

10.1007/s10856-009-3883-1

10.1016/j.actbio.2014.04.020

Monkhouse D. C., Kumar S., Rowe C. W., Yoo J. ‘Rapid prototyping and manufacturing process’, US Patent Number: US6547994 B1. 2003, pages 8.

Khadiga Abdol Rahman Hassan B. MS thesis. Suny, 1984: ‘The microelectrophoretic behaviour of sparingly soluble salts’, State University of New York, 1984.

Vorndran E., University of Würzburg, 2012.

10.1007/s10856-010-4148-8

10.1016/S0142-9612(03)00131-5

10.1016/j.biomaterials.2003.08.064

10.1163/156856201744489

10.1016/j.jmatprotec.2006.07.016

10.1016/S0142-9612(01)00232-0

10.1002/masy.200850911

Moroni L., 2004, Eur. Cells Mater., 7, 68

10.1007/s11434-009-0271-7

10.1515/IJNSNS.2004.5.3.253

10.1016/j.jconrel.2007.06.022

Cornelsen M., 2013, Biomed. Technol., 58, 4090

10.1016/j.ijom.2012.03.031

10.1016/j.jcms.2008.11.011

10.1111/j.1600-051X.2011.01787.x

10.1016/0168-3659(95)00173-5

10.1016/S0168-3659(99)00225-4

10.1007/s11595-009-6977-1

10.1002/jps.21284

10.1088/1748-6041/4/6/065005

10.1002/jps.20864

Gbureck U., 2006, Cytotherapy, 8, 14

10.1016/j.actbio.2008.08.019

10.1016/j.biomaterials.2014.01.064

10.1088/1758-5082/6/1/015006

10.1088/1758-5082/6/2/025005

10.1007/s10856-009-3878-y

10.1016/j.biomaterials.2008.06.012

10.1016/j.tibtech.2004.10.004

10.1039/c2jm33749e

10.1088/0960-1317/20/6/065015

10.1002/jbm.a.31329

Luo Y., 2013, J. Mater. Chem., 1, 4088

10.1007/978-3-642-01697-4_11

10.1166/jbt.2014.1232

10.1002/jbm.a.35307

10.1002/aic.11610

10.1016/j.bone.2005.03.008

10.1038/nrm1858

10.1016/j.dental.2011.09.010

10.1002/term.555

10.1016/j.matdes.2009.12.050

Mandal S., Kumar A., Basu B. ‘Three dimensional printed hydroxyapatite-based composites with interconnected pore architecture for segmental bone defects’, 2015, Submitted for publication.

10.1177/0885328215617058

10.1016/j.jmst.2013.08.023

10.1007/s11661-010-0388-y

10.1016/S2238-7854(12)70009-1

10.1016/j.actamat.2011.10.051

10.1002/dem.201500086