Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core
Tài liệu tham khảo
Ashby, 2000
Gibson, 1997
Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5
Lefebvre, 2008, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater., 10, 775, 10.1002/adem.200800241
Smith, 2012, Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res., 71, 1, 10.1016/j.jcsr.2011.10.028
Ashby, 2003, Metal foams: a survey, Sci. China Ser. B: Chem., 46, 521, 10.1360/02yb0203
Zhao, 2012, Review on thermal transport in high porosity cellular metal foams with open cells, Int. J. Heat Mass Transf., 55, 3618, 10.1016/j.ijheatmasstransfer.2012.03.017
Dukhan, 2013
Betts, 2012, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Mater. Sci. Technol., 28, 129, 10.1179/026708311X13135950699290
Davies, 1983, Metallic foams: their production, properties and applications, J. Mater. Sci., 18, 1899, 10.1007/BF00554981
Qin, 2009, An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch, Compos. Struct., 88, 509, 10.1016/j.compstruct.2008.05.012
Qin, 2011, Low-velocity heavy-mass impact response of slender metal foam core sandwich beam, Compos. Struct., 93, 1526, 10.1016/j.compstruct.2010.11.018
Tagarielli, 2007, The dynamic response of composite sandwich beams to transverse impact, Int. J. Solids Struct., 44, 2442, 10.1016/j.ijsolstr.2006.07.015
Kim, 2002, Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams, Compos. Struct., 55, 51, 10.1016/S0263-8223(01)00136-2
Shahdin, 2009, Fabrication and mechanical testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams, Compos. Struct., 90, 404, 10.1016/j.compstruct.2009.04.003
Yu, 2005, Free flexural vibration analysis of symmetric honeycomb panels, J. Sound Vib., 284, 189, 10.1016/j.jsv.2004.06.028
Jasion, 2013, Global buckling of a sandwich column with metal foam core, J. Sandw. Struct. Mater., 10.1177/1099636213499339
Crupi, 2007, Aluminium foam sandwiches collapse modes under static and dynamic three-point bending, Int. J. Impact Eng., 34, 509, 10.1016/j.ijimpeng.2005.10.001
Tagarielli, 2005, A comparison of the structural response of clamped and simply supported sandwich beams with aluminium faces and a metal foam core, J. Appl. Mech., 72, 408, 10.1115/1.1875432
Jing, 2011, The dynamic response of sandwich beams with open-cell metal foam cores, Compos. Part B: Eng., 42, 1, 10.1016/j.compositesb.2010.09.024
Wadley, 2003, Fabrication and structural performance of periodic cellular metal sandwich structures, Compos. Sci. Technol., 63, 2331, 10.1016/S0266-3538(03)00266-5
McCormack, 2001, Failure of sandwich beams with metallic foam cores, Int. J. Solids Struct., 38, 4901, 10.1016/S0020-7683(00)00327-9
Jasion, 2012, Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core, Thin-Walled Struct., 61, 154, 10.1016/j.tws.2012.04.013
Vaidya, 2006, Impact and post-impact vibration response of protective metal foam composite sandwich plates, Mater. Sci. Eng.: A, 428, 59, 10.1016/j.msea.2006.04.114
Radford, 2006, The response of clamped sandwich plates with metallic foam cores to simulated blast loading, Int. J. Solids Struct., 43, 2243, 10.1016/j.ijsolstr.2005.07.006
Hanssen, 2006, A numerical model for bird strike of aluminium foam-based sandwich panels, Int. J. Impact Eng., 32, 1127, 10.1016/j.ijimpeng.2004.09.004
Magnucki, 2004, Elastic buckling of a porous beam, J. Theor. Appl. Mech., 42, 859
Chen, 2015, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., 133, 54, 10.1016/j.compstruct.2015.07.052
Chen, 2016, Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., 108, 14, 10.1016/j.ijmecsci.2016.01.025
Magnucka-Blandzi, 2007, Effective design of a sandwich beam with a metal foam core, Thin-Walled Struct., 45, 432, 10.1016/j.tws.2007.03.005
Magnucka-Blandzi, 2011, Mathematical modelling of a rectangular sandwich plate with a metal foam core, J. Theor. Appl. Mech., 49, 439
Grygorowicz, 2015, Elastic buckling of a sandwich beam with variable mechanical properties of the core, Thin-Walled Struct., 87, 127, 10.1016/j.tws.2014.11.014
Mojahedin, 2016, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled Struct., 99, 83, 10.1016/j.tws.2015.11.008
Kitipornchai, 2004, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, Int. J. Solids Struct., 41, 2235, 10.1016/j.ijsolstr.2003.12.019
Rafiee, 2013, Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers, Compos. Struct., 96, 716, 10.1016/j.compstruct.2012.10.005
Belouettar, 2008, Active control of nonlinear vibration of sandwich piezoelectric beams: a simplified approach, Comput. Struct., 86, 386, 10.1016/j.compstruc.2007.02.009
Choi, 1995, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio, Int. J. Mech. Sci., 37, 51, 10.1016/0020-7403(94)00047-N
Kitipornchai, 2009, Nonlinear vibration of edge cracked functionally graded Timoshenko beams, J. Sound Vib., 324, 962, 10.1016/j.jsv.2009.02.023
Wu, 2015, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., 1540011, 10.1142/S0219455415400118
Marur, 2005, Non-linear beam vibration problems and simplifications in finite element models, Comput. Mech., 35, 352, 10.1007/s00466-004-0622-9
Ke, 2010, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., 92, 676, 10.1016/j.compstruct.2009.09.024
Ke, 2012, Nonlinear free vibration of size-dependent functionally graded microbeams, Int. J. Eng. Sci., 50, 256, 10.1016/j.ijengsci.2010.12.008