Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core

Thin-Walled Structures - Tập 107 - Trang 39-48 - 2016
Da Chen1, Sritawat Kitipornchai1, Jie Yang2
1School of Civil Engineering, The University of Queensland, Brisbane, St Lucia 4072, Australia
2School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia

Tài liệu tham khảo

Ashby, 2000 Gibson, 1997 Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5 Lefebvre, 2008, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater., 10, 775, 10.1002/adem.200800241 Smith, 2012, Steel foam for structures: a review of applications, manufacturing and material properties, J. Constr. Steel Res., 71, 1, 10.1016/j.jcsr.2011.10.028 Ashby, 2003, Metal foams: a survey, Sci. China Ser. B: Chem., 46, 521, 10.1360/02yb0203 Zhao, 2012, Review on thermal transport in high porosity cellular metal foams with open cells, Int. J. Heat Mass Transf., 55, 3618, 10.1016/j.ijheatmasstransfer.2012.03.017 Dukhan, 2013 Betts, 2012, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Mater. Sci. Technol., 28, 129, 10.1179/026708311X13135950699290 Davies, 1983, Metallic foams: their production, properties and applications, J. Mater. Sci., 18, 1899, 10.1007/BF00554981 Qin, 2009, An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch, Compos. Struct., 88, 509, 10.1016/j.compstruct.2008.05.012 Qin, 2011, Low-velocity heavy-mass impact response of slender metal foam core sandwich beam, Compos. Struct., 93, 1526, 10.1016/j.compstruct.2010.11.018 Tagarielli, 2007, The dynamic response of composite sandwich beams to transverse impact, Int. J. Solids Struct., 44, 2442, 10.1016/j.ijsolstr.2006.07.015 Kim, 2002, Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams, Compos. Struct., 55, 51, 10.1016/S0263-8223(01)00136-2 Shahdin, 2009, Fabrication and mechanical testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams, Compos. Struct., 90, 404, 10.1016/j.compstruct.2009.04.003 Yu, 2005, Free flexural vibration analysis of symmetric honeycomb panels, J. Sound Vib., 284, 189, 10.1016/j.jsv.2004.06.028 Jasion, 2013, Global buckling of a sandwich column with metal foam core, J. Sandw. Struct. Mater., 10.1177/1099636213499339 Crupi, 2007, Aluminium foam sandwiches collapse modes under static and dynamic three-point bending, Int. J. Impact Eng., 34, 509, 10.1016/j.ijimpeng.2005.10.001 Tagarielli, 2005, A comparison of the structural response of clamped and simply supported sandwich beams with aluminium faces and a metal foam core, J. Appl. Mech., 72, 408, 10.1115/1.1875432 Jing, 2011, The dynamic response of sandwich beams with open-cell metal foam cores, Compos. Part B: Eng., 42, 1, 10.1016/j.compositesb.2010.09.024 Wadley, 2003, Fabrication and structural performance of periodic cellular metal sandwich structures, Compos. Sci. Technol., 63, 2331, 10.1016/S0266-3538(03)00266-5 McCormack, 2001, Failure of sandwich beams with metallic foam cores, Int. J. Solids Struct., 38, 4901, 10.1016/S0020-7683(00)00327-9 Jasion, 2012, Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core, Thin-Walled Struct., 61, 154, 10.1016/j.tws.2012.04.013 Vaidya, 2006, Impact and post-impact vibration response of protective metal foam composite sandwich plates, Mater. Sci. Eng.: A, 428, 59, 10.1016/j.msea.2006.04.114 Radford, 2006, The response of clamped sandwich plates with metallic foam cores to simulated blast loading, Int. J. Solids Struct., 43, 2243, 10.1016/j.ijsolstr.2005.07.006 Hanssen, 2006, A numerical model for bird strike of aluminium foam-based sandwich panels, Int. J. Impact Eng., 32, 1127, 10.1016/j.ijimpeng.2004.09.004 Magnucki, 2004, Elastic buckling of a porous beam, J. Theor. Appl. Mech., 42, 859 Chen, 2015, Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., 133, 54, 10.1016/j.compstruct.2015.07.052 Chen, 2016, Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., 108, 14, 10.1016/j.ijmecsci.2016.01.025 Magnucka-Blandzi, 2007, Effective design of a sandwich beam with a metal foam core, Thin-Walled Struct., 45, 432, 10.1016/j.tws.2007.03.005 Magnucka-Blandzi, 2011, Mathematical modelling of a rectangular sandwich plate with a metal foam core, J. Theor. Appl. Mech., 49, 439 Grygorowicz, 2015, Elastic buckling of a sandwich beam with variable mechanical properties of the core, Thin-Walled Struct., 87, 127, 10.1016/j.tws.2014.11.014 Mojahedin, 2016, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled Struct., 99, 83, 10.1016/j.tws.2015.11.008 Kitipornchai, 2004, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, Int. J. Solids Struct., 41, 2235, 10.1016/j.ijsolstr.2003.12.019 Rafiee, 2013, Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers, Compos. Struct., 96, 716, 10.1016/j.compstruct.2012.10.005 Belouettar, 2008, Active control of nonlinear vibration of sandwich piezoelectric beams: a simplified approach, Comput. Struct., 86, 386, 10.1016/j.compstruc.2007.02.009 Choi, 1995, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio, Int. J. Mech. Sci., 37, 51, 10.1016/0020-7403(94)00047-N Kitipornchai, 2009, Nonlinear vibration of edge cracked functionally graded Timoshenko beams, J. Sound Vib., 324, 962, 10.1016/j.jsv.2009.02.023 Wu, 2015, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., 1540011, 10.1142/S0219455415400118 Marur, 2005, Non-linear beam vibration problems and simplifications in finite element models, Comput. Mech., 35, 352, 10.1007/s00466-004-0622-9 Ke, 2010, Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., 92, 676, 10.1016/j.compstruct.2009.09.024 Ke, 2012, Nonlinear free vibration of size-dependent functionally graded microbeams, Int. J. Eng. Sci., 50, 256, 10.1016/j.ijengsci.2010.12.008