Level-set methods for structural topology optimization: a review
Tóm tắt
This review paper provides an overview of different level-set methods for structural topology optimization. Level-set methods can be categorized with respect to the level-set-function parameterization, the geometry mapping, the physical/mechanical model, the information and the procedure to update the design and the applied regularization. Different approaches for each of these interlinked components are outlined and compared. Based on this categorization, the convergence behavior of the optimization process is discussed, as well as control over the slope and smoothness of the level-set function, hole nucleation and the relation of level-set methods to other topology optimization methods. The importance of numerical consistency for understanding and studying the behavior of proposed methods is highlighted. This review concludes with recommendations for future research.
Tài liệu tham khảo
Abe K, Kazama S, Koro K (2007) A boundary element approach for topology optimization problem using the level set method. Commun Numer Methods Eng 23(5):405–416
Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194(30–33):3269–3290
Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918
Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76(1):27–68
Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. CR Math 334(12):1125–1130
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393
Allaire G, De Gournay F, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80
Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. CR Math 349(17–18):999–1003
Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69
Amstutz S (2011) Connections between topological sensitivity analysis and material interpolation schemes in topology optimization. Struct Multidisc Optim 43(6):755–765
Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588
Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196
Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202
Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224
Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654
Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin
Bletzinger KU, Kimmich S, Ramm E (1991) Efficient modeling in shape optimal design. Comput Syst Eng 2(5–6):483–495
Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var 9:19–48
Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259
Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidisc Optim 24(4):263–276
Burger M (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound 5(3):301–330
Burger M, Osher S (2005) A survey on level set methods for inverse problems and optimal design. Eur J Appl Math 16(2):263–301
Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362
Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726
Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196(1):327–347
Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidisc Optim 41(3):453–464
Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308
Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidisc Optim 44(1):1–18
Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput-Aided Des 40(9):951–962
Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidisc Optim 41(4):507–524
Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization: linear systems, vol 1. Springer, New York
Choi JS, Yamada T, Izui K, Nishiwaki S, Yoo J (2011) Topology optimization using a reaction-diffusion equation. Comput Methods Appl Mech Eng 200(29–32):2407–2420
COMSOL (2011) COMSOL multiphysics user’s guide, version 4.2a
De Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367
De Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM Control Optim Calc Var 14(01):43–70
De Ruiter MJ, Van Keulen F (2000) Topology optimization: approaching the material distribution problem using a topological function description. In: Topping BHV (ed) Computational techniques for materials, composites and composite structures, Edinburgh, United Kingdom, pp 111–119
De Ruiter MJ, Van Keulen F (2001) Topology optimization using the topology description function approach. In: Cheng G, Gu Y, Liu S, Wang Y (eds) 4th World congress on structural and multidisciplinary optimization, Dailan, China
De Ruiter MJ, Van Keulen F (2002) The topological derivative in the topology description function approach. In: Gosling P (ed) Engineering design optimization, product and process improvement, ASMO UK/ISSMO: University of Newcastle-upon-Tyne
De Ruiter MJ, Van Keulen F (2004) Topology optimization using a topology description function. Struct Multidisc Optim 26(6):406–416
Duan XB, Ma YC, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222(2):487–499
Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331
Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Multidisc Optim 8(1):42–51
Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428
Frei WR, Tortorelli DA, Johnson HT (2007) Geometry projection method for optimizing photonic nanostructures. Opt Lett 32(1):77–79
Frei WR, Johnson HT, Tortorelli DA (2008) Optimization of photonic nanostructures. Comput Methods Appl Mech Eng 197(41–42):3410–3416
Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304
Fulmański P, Laurain A, Scheid JF, Sokołowski J (2007) A level set method in shape and topology optimization for variational inequalities. Int J Appl Math Comput Sci 17(3):413–430
Fulmański P, Laurain A, Scheid JF, Sokołowski J (2008) Level set method with topological derivatives in shape optimization. Int J Comput Math 85(10):1491–1514
Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39:1756
Gomes AA, Suleman A (2006) Application of spectral level set methodology in topology optimization. Struct Multidisc Optim 31(6):430–443
Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316
Groenwold AA, Etman LFP (2010) A quadratic approximation for structural topology optimization. Int J Numer Methods Eng 82(4):505–524
Guest JK (2009a) Imposing maximum length scale in topology optimization. Struct Multidisc Optim 37(5):463–473
Guest JK (2009b) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1–4):123–135
Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254
Guo X, Zhao K, Wang MY (2005) A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern 34(1):255–282
Gurtin ME (1996) Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys D 92(3–4):178–192
Ha SH, Cho S (2005) Topological shape optimization of heat conduction problems using level set approach. Numer Heat Transf, B Fundam 48(1):67–88
Ha SH, Cho S (2008a) Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput Struct 86(13–14):1447–1455
Ha SH, Cho S (2008b) Level set-based topological shape optimization of nonlinear heat conduction problems. Numer Heat Transf, B Fundam 54(6):454–475
Haber E (2004) A multilevel, level-set method for optimizing eigenvalues in shape design problems. J Comput Phys 198(2):518–534
Haber RB, Bendsøe MP (1998) Problem formulation, solution procedures and geometric modeling–key issues in variable-topology optimization. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, St. Louis, MO, pp 1864–1873
Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12
Hartmann D, Meinke M, Schröder W (2010) The constrained reinitialization equation for level set methods. J Comput Phys 229(5):1514–1535
Hassani B, Hinton E (1998) A review of homogenization and topology optimization. I–Homogenization theory for media with periodic structure. Comput Struct 69(6):707–717
He L, Kao CY, Osher S (2007) Incorporating topological derivatives into shape derivatives based level set methods. J Comput Phys 225(1):891–909
Hirsch C (2007) Numerical computation of internal and external flows: fundamentals of computational fluid dynamics, vol 1. Butterworth-Heinemann, Oxford
Ho HS, Lui BFY, Wang MY (2011) Parametric structural optimization with radial basis functions and partition of unity method. Optim Methods Softw 26(4–5):533–553
Ho HS, Wang MY, Zhou MD (2012) Parametric structural optimization with dynamic knot RBFs and partition of unity method. Struct Multidisc Optim 1–13. doi:10.1007/s00158-012-0848-7
Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley, New York
Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transfer 52(11–12):2721–2732
Kao CY, Osher S, Yablonovitch E (2005) Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl Phys, B Lasers Opt 81(2):235–244
Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44(1):19–24
Khalil H, Bila S, Aubourg M, Baillargeat D, Verdeyme S, Jouve F, Delage C, Chartier T (2010) Shape optimized design of microwave dielectric resonators by level-set and topology gradient methods. Int J RF Microw Comput-Aided Eng 20(1):33–41
Kim MG, Ha SH, Cho S (2009) Level set-based topological shape optimization of nonlinear heat conduction problems using topological derivatives. Mech Des Struct Mach 37(4):550–582
Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: International federation of active controls symposium on computer-aided design of control systems, Zürich
Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Multidisc Optim 46(3):311–326
Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519
Kwak J, Cho S (2005) Topological shape optimization of geometrically nonlinear structures using level set method. Comput Struct 83(27):2257–2268
Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781
Le C, Bruns T, Tortorelli DA (2011) A gradient-based, parameter-free approach to shape optimization. Comput Methods Appl Mech Eng 200(9–12):985–996
Lim S, Yamada T, Min S, Nishiwaki S (2011) Topology optimization of a magnetic actuator based on a level set and phase-field approach. IEEE Trans Magn 47(5):1318–1321
Liu Z, Korvink JG (2008) Adaptive moving mesh level set method for structure topology optimization. Eng Optim 40(6):529–558
Liu Z, Korvink JG, Huang R (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidisc Optim 29(6):407–417
Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862–892
Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology optimization of compliant mechanisms using a parameterization level set method. J Comput Phys 227(1):680–705
Luo J, Luo Z, Chen L, Tong L, Wang MY (2008a) A semi-implicit level set method for structural shape and topology optimization. J Comput Phys 227(11):5561–5581
Luo J, Luo Z, Chen S, Tong L, Wang MY (2008b) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331
Luo Z, Wang MY, Wang S, Wei P (2008c) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76(1):1–26
Luo Z, Tong L, Luo J, Wei P, Wang MY (2009a) Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J Comput Phys 228(7):2643–2659
Luo Z, Tong L, Ma H (2009b) Shape and topology optimization for electrothermomechanical microactuators using level set methods. J Comput Phys 228(9):3173–3181
Luo Z, Zhang N, Gao W, Ma H (2012) Structural shape and topology optimization using a meshless Galerkin level set method. Int J Numer Methods Eng 90(3):369–389
Lyra PRM, Morgan K (2000a) A review and comparative study of upwind biased schemes for compressible flow computation. Part I: 1-D firstorder schemes. Arch Comput Methods Eng 7(1):19–55
Lyra PRM, Morgan K (2000b) A review and comparative study of upwind biased schemes for compressible flow computation. Part II: 1-D higher-order schemes. Arch Comput Methods Eng 7(3):333–377
Lyra PRM, Morgan K (2002) A review and comparative study of upwind biased schemes for compressible flow computation. Part III: Multidimensional extension on unstructured grids. Arch Comput Methods Eng 9(3):207–256
Malladi R, Sethian JA, Vemuri BC (1995a) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175
Malladi R, Sethian JA, Vemuri BC (1995b) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175
Marchuk GI (1990) Splitting and alternating direction methods. Handb Numer Anal 1:197–462
Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Multidisc Optim 15(2):81–91
Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. In: 9th World congress on structural and multidisciplinary optimization, Shizuoka, Japan
Mohamadian M, Shojaee S (2012) Binary level set method for structural topology optimization with MBO type of projection. Int J Numer Methods Eng 89(5):658–670
Myśliński A (2008) Level set method for optimization of contact problems. Eng Anal Bound Elem 32(11):986–994
Norato J, Haber R, Tortorelli DA, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312
Norato JA, Bendsøe MP, Haber RB, Tortorelli DA (2007) A topological derivative method for topology optimization. Struct Multidisc Optim 33(4):375–386
Novotny AA, Feijóo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7–8):803–829
Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1):785–807
Osher S, Fedkiw RP (2001) Level set methods: an overview and some recent results. J Comput Phys 169(2):463–502
Osher S, Fedkiw RP (2003) Level set methods and dynamic implicit surfaces, vol 153. Springer, New York
Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer, New York
Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171(1):272–288
Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49
Otomori M, Yamada T, Izui K, Nishiwaki S (2011) Level set-based topology optimisation of a compliant mechanism design using mathematical programming. Mech Sci 2(1):91–98
Park KS, Youn SK (2008) Topology optimization of shell structures using adaptive inner-front (AIF) level set method. Struct Multidisc Optim 36(1):43–58
Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140
Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Struct Multidisc Optim 41(1):117–131
Pironneau O (1989) Finite element method for fluids. Wiley, Chichester, England and New York/John Wiley and Sons, Paris
Rong JH, Liang QQ (2008) A level set method for topology optimization of continuum structures with bounded design domains. Comput Methods Appl Mech Eng 197(17–18):1447–1465
Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21(2):90–108
Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237
Rozvany GIN, Zhou M (1991) The COC algorithm, part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1–3):281–308
Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3):250–252
Rozvany GIN, Bendsøe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48:41
Schleupen A, Maute K, Ramm E (2000) Adaptive FE-procedures in shape optimization. Struct Multidisc Optim 19(4):282–302
Schumacher A (1995) Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. PhD thesis, Universität-Gesamthochschule Siegen, Siegen, Germany
Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge
Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169(2):503–555
Sethian JA, Smereka P (2003) Level set methods for fluid interfaces. Annu Rev Fluid Mech 35(1):341–372
Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528
Shim H, Ho VTT, Wang S, Tortorelli DA (2008) Topological shape optimization of electromagnetic problems using level set method and radial basis function. Comput Model Eng Sci 37(2):175–202
Shojaee S, Mohammadian M (2011) A binary level set method for structural topology optimization. Int J Optim Civil Eng 1:73–90
Sigmund O (1994) Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark
Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424
Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidisc Optim 43:589–596
Sigmund O, Maute K (2012) Sensitivity filtering from a continuum mechanics perspective. Struct Multidisc Optim 46(4):471–475
Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75
Sokołowski J, Żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272
Sokołowski J, Żochowski A (2001) Topological derivatives of shape functionals for elasticity systems. Mech Struct Mach 29(3):331–349
Sokołowski J, Zolésio JP (1992) Introduction to shape optimization; shape sensitivity analysis. In: Springer series in computational mathematics, vol 16. Springer
Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124
Strain J (1999) Semi-Lagrangian methods for level set equations. J Comput Phys 151(2):498–533
Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159
Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318
Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373
Swan CC, Kosaka I (1997) Voigt–Reuss topology optimization for structures with nonlinear material behaviors. Int J Numer Methods Eng 40(20):3785–3814
Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229(7):2697–2718
Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems. Springer, New York
Van Dijk NP, Yoon GH, Van Keulen F, Langelaar M (2010) A level-set-based topology optimization using the element connectivity parameterization method. Struct Multidisc Optim 42(2):269–282
Van Dijk NP, Langelaar M, Van Keulen F (2012) Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91(1):67–97
Van Keulen F, Haftka RT, Kim NH (2005) Review of options for structural design sensitivity analysis. Part 1: Linear systems. Comput Methods Appl Mech Eng 194(30–33):3213–3243
Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D filets using X-FEM and level set description. Struct Multidisc Optim 33(4):425–438
Van Miegroet L, Moës N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6th World congress of structural and multidisciplinary optimization
Wang MY, Wang X (2004a) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496
Wang MY, Wang X (2004b) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6:373–396
Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37(3):321–337
Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922
Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65(12):2060–2090
Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566
Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246
Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidisc Optim 27(1):1–19
Wang MY, Chen S, Wang X, Mei Y (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941–956
Wang SY, Lim KM, Khoo BC, Wang MY (2007a) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421
Wang SY, Lim KM, Khoo BC, Wang MY (2007b) A geometric deformation constrained level set method for structural shape and topology optimization. Comput Model Eng Sci 18(3):155–181
Wang SY, Lim KM, Khoo BC, Wang MY (2007c) An unconditionally time-stable level set method and its application to shape and topology optimization. Comput Model Eng Sci 21(1):1–40
Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43:767–784
Wei P, Wang MY (2006) Parametric structural shape and topology optimization method with radial basis functions and level-set method. In: Proceedings of international design engineering technical conferences & computers and information in engineering conference
Wei P, Wang MY (2009) Piecewise constant level set method for structural topology optimization. Int J Numer Methods Eng 78(4):379–402
Wei P, Wang MY, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput-Aided Des 42(8):708–719
Xia Q, Wang MY (2008) Topology optimization of thermoelastic structures using level set method. Comput Mech 42(6):837–857
Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896
Xing X, Wang MY, Lui BFY (2007) Parametric shape and topology optimization with moving knots radial basis functions and level set methods. In: 7th World congress on structural and multidisciplinary optimization, Seoul, Korea
Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Eng 82(7):805–842
Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891
Yamada T, Izui K, Nishiwaki S (2011) A level set-based topology optimization method for maximizing thermal diffusivity in problems including design-dependent effects. J Mech Des 133:1–9
Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010a) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Methods Eng 83(12):1580–1624
Yamasaki S, Nomura T, Kawamoto A, Sato K, Izui K, Nishiwaki S (2010b) A level set based topology optimization method using the discretized signed distance function as the design variables. Struct Multidisc Optim 41(5):685–698
Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868
Yanenko NN (1971) The method of fractional steps. Springer, Berlin
Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009
Yulin M, Xiaoming W (2004a) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441
Yulin M, Xiaoming W (2004b) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech Sin 20(5):507–518
Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336
Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227(24):10178–10195
Zhou JX, Zou W (2008) Meshless approximation combined with implicit topology description for optimization of continua. Struct Multidisc Optim 36(4):347–353
Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidisc Optim 33(2):89–111
Zhou SW, Li W, Sun GY, Li Q (2010) A level-set procedure for the design of electromagnetic metamaterials. Opt Express 18(7):6693–6702
Zhu S, Liu C, Wu Q (2010) Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum. Comput Methods Appl Mech Eng 199(45–48):2970–2986
Zhuang C, Xiong Z, Ding H (2009) Structural shape and topology optimization based on level-set modelling and the element-propagating method. Eng Optim 41(6):537–555
Zhuang CG, Xiong ZH, Ding H (2007) A level set method for topology optimization of heat conduction problem under multiple load cases. Comput Methods Appl Mech Eng 196(4–6):1074–1084
Zhuang C, Xiong Z, Ding H (2010) Topology optimization of multi-material for the heat conduction problem based on the level set method. Eng Optim 42(9):811–831