Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation

Nature - Tập 398 Số 6722 - Trang 67-69 - 1999
Paul A. Garris1, Michaux Kilpatrick2, Melissa A. Bunin2, Darren Michael2, Q. David Walker2, R. Mark Wightman3
1Department of Biological Sciences, 102 Felmley Hall, Illinois State University, Normal, 61790-4120, Illinois, USA
2Department of Chemistry and Curriculum in Neurobiology, Venable Hall, 3290, CB
3University of North Carolina, Chapel Hill, North Carolina, 27599-3290, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schulteis, G., Markou, A., Cole, M. & Koob, G. F. Decreased brain reward produced by ethanol withdrawal. Proc. Natl Acad. Sci. USA 92, 5880–5884 (1995).

Pich, E. M.et al. Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86 (1997).

Shizgal, P. & Murray, B. in The Neuropharmacological Basis of Reward (eds Liebman, J. M. & Cooper, S.J.) 106–162 (Clarendon, Oxford, (1989)).

Wise, R. A. Addictive drugs and brain stimulation reward. Annu. Rev. Neurosci. 19, 319–340 (1996).

Phillips, A. G. & Fibiger, H. C. in The Neuropharmacological Basis of Reward (eds Liebman, J. M. & Cooper, S. J.) 66–104 (Clarendon, Oxford, (1989)).

Olds, J. & Milner, P. M. Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

Cahill, P., Walker, Q. D., Finnegan, J. M., Mickelson, G. E. & Wightman, R. M. Microelectrodes for the measurement of catecholamines in biological systems. Anal. Chem. 68, 3180–3186 (1996).

Revec, G. V., Grabner, C. P., Pierce, R. C. & Bardo, M. T. Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience 76, 707–714 (1997).

Schulz, W., Dayan, P. & Montague, P. R. Aneural substrate of prediction and reward. Science 275, 1593–1599 (1997).

Stellar, J. J & Rice, M. B. in The Neuropharmacological Basis of Reward (eds Liebman, J. M. & Cooper, S. J.) 14–65 (Clarendon, Oxford, (1989)).

Fibiger, H. C., LePlane, F. G., Jakubovic, A. & Phillips, A. G. The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J. Neurosci. 7, 3888–3896 (1987).

Blaha, C. D. & Phillips, A. G. Application of in vivo electrochemistry to the measurement of changes in dopamine release during intracranial self-stimulation. J. Neurosci. Meth. 34, 125–133 (1990).

Miliaressis, A., Emond, C. & Merali, Z. Re-evaluation of the role of dopamine in intracranial self-stimulation using in vivo microdialysis. Behav. Brain Res. 46, 43–48 (1991).

Nakahara, D., Fuchikami, K., Ozaki, N., Iwasaki, T. & Nagatu, T. Differential effect of self-stimulation on dopamine release and metabolism in the rat medial frontal cortex, nucleus accumbens and striatum studied by in vivo microdialysis. Brain Res. 574, 164–170 (1992).

Diorino, D. F., Coury, A., Fibiger, H. C. & Phillips, A. C. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat. Behav. Brain Res. 55, 131–141 (1993).

Murray, B. & Shizgal, P. Evidence implicating both slow- and fast-conducting fibers in the rewarding effect of medial forebrain bundle stimulation. Behav. Brain Res. 63, 47–60 (1994).

Garris, P. A., Christensen, J. R. C., Rebec, G. V. & Wightman, R. M. Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J. Neurochem. 68, 152–161 (1997).

Michael, D., Travis, E. R. & Wightman, R. M. Color images for fast-scan CV measurements in biological systems. Anal. Chem. 70, 586A–592A (1998).

Marsden, C. A.et al. In vivo voltammetry—present electrodes and methods. Neuroscience 25, 389–400 (1988).

Kruk, Z. L.et al. Real time measurement of stimulated dopamine release in the conscious rat using fast cyclic voltammetry: dopamine release is not observed during intracranial self stimulation. J. Neurosci. Meth. 79, 9–19 (1998).

Jones, S. R., O'Dell, S. J., Marshall, J. F. & Wightman, R. M. Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain. Synapse 23, 224–231 (1996).

Parsons, L. H. & Justice, J. B. Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J. Neurochem. 58, 212–218 (1992).

Garris, P. A., Ciolkowski, E. L., Pastore, P. & Wightman, R. M. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 14, 6084–6093 (1994).

Nirenberg, M. J.et al. The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J. Neurosci. 17, 6899–6907 (1997).

Michael, A. C., Ikeda, M. & Justice, J. B. J Mechanisms contributing to the recovery of striatal releasable dopamine following MFB stimulation. Brain Res. 421, 325–335 (1987).

Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996).

Rocha, B. A.et al. Cocaine self-adminsitration in dopamine-transporter knockout mice. Nature Neurosci. 1, 132–137 (1998).

Gallistel, C. R. & Freyd, G. Quantitative determination of the effects of catecholaminergic agonists and antagonists on the rewarding efficacy of brain stimulation. Pharm. Biochem. Behav. 26, 731–741 (1987).

Wise, R. A. in The Neurobiology of Opiate Reward Processes (eds Smith, J. E. & Lane, J. D.) 405–436 (Elsevier Biomedical, New York, (1983)).