An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures
Tài liệu tham khảo
Poniewski, 2008
Lu, 2011, Nanoscale surface modification techniques for pool boiling enhancement – a critical review and future directions, Heat Transfer Eng., 32, 827, 10.1080/01457632.2011.548267
Honda, 2002, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, J. Heat Transfer, 124, 383, 10.1115/1.1447937
Wei, 2003, Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72, Int. J. Heat Mass Transfer, 46, 4059, 10.1016/S0017-9310(03)00226-6
Chu, 2012, Structured surfaces for enhanced pool boiling heat transfer, Appl. Phys. Lett., 100, 241603-1, 10.1063/1.4724190
Im, 2010, Enhanced boiling of a dielectric liquid on copper nanowire surfaces, Int. J. Micro-Nano Scale Transport, 1, 79, 10.1260/1759-3093.1.1.79
Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030
Ahn, 2009, Pool boiling experiments on a nano-structured surface, IEEE Transactions on Components and Packaging Technologies, 32, 156, 10.1109/TCAPT.2009.2013980
Jun, 2013, Pool boiling on nano-textured surfaces, Int. J. Heat Mass Transfer, 62, 99, 10.1016/j.ijheatmasstransfer.2013.02.046
Guglielmini, 2002, Boiling of saturated FC-72 on square pin fin arrays, Int. J. Therm. Sci., 41, 599, 10.1016/S1290-0729(02)01353-4
Yu, 2007, Pool boiling heat transfer on horizontal rectangular fin array in saturated FC-72, Int. J. Heat Mass Transfer, 50, 3624, 10.1016/j.ijheatmasstransfer.2007.02.003
Yu, 2006, Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72, J. Micromech. Microeng., 16, 2092, 10.1088/0960-1317/16/10/024
Wang, 1993, Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME J. Heat Transfer, 115, 659, 10.1115/1.2910737
Dhir, 2003, Nucleation site density, Multiphase Sci. Tech., 15, 315, 10.1615/MultScienTechn.v15.i1-4.250
Benjamin, 1997, Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties, Exp. Therm. Fluid Sci., 15, 32, 10.1016/S0894-1777(96)00168-9
McHale, 2013, Nucleate boiling from smooth and rough surfaces – Part 1: fabrication and characterization of an optically transparent heater–sensor substrate with controlled surface roughness, Exp. Therm. Fluid Sci., 44, 456, 10.1016/j.expthermflusci.2012.08.006
McHale, 2013, Nucleate boiling from smooth and rough surfaces – Part 2: analysis of surface roughness effects on nucleate boiling, Exp. Therm. Fluid Sci., 44, 439, 10.1016/j.expthermflusci.2012.08.005
Yang, 1988, A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics, Int. J. Heat Mass Transfer, 31, 1127, 10.1016/0017-9310(88)90055-5
Li, 2008, Nanostructured copper interfaces for enhanced boiling, Small, 4, 1084, 10.1002/smll.200700991
Chen, 2009, Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays, Sci. China Ser. E: Technol. Sci., 52, 1596, 10.1007/s11431-009-0195-0
Dong, 2012, An analysis of surface-microstructures effects on heterogeneous nucleation in pool boiling, Int. J. Heat Mass Transfer, 55, 4376, 10.1016/j.ijheatmasstransfer.2012.04.006
Huang, 2011, Metal-assisted chemical etching of silicon: a review, Adv. Mater., 23, 285, 10.1002/adma.201001784
Peng, 2005, Aligned single-crystalline Si nanowire arrays for photovoltaic applications, Small, 1, 1062, 10.1002/smll.200500137
Ivey, 1967, Relationships between bubble frequency, departure diameter, and rise velocity in nucleate boiling, Int. J. Heat Mass Transfer, 10, 1023, 10.1016/0017-9310(67)90118-4
Quéré, 2008, Wetting and roughness, Annu. Rev. Mater. Sci. Res., 38, 71, 10.1146/annurev.matsci.38.060407.132434