Requirements for the transfer of lead-free piezoceramics into application
Tài liệu tham khảo
Saito, 2004, Lead-free piezoceramics, Nature, 432, 84, 10.1038/nature03028
Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J Eur Ceram Soc, 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013
Wang, 2013, Temperature-insensitive (K,Na)NbO3-Based lead-free piezoactuator ceramics, Adv Funct Mater, 23, 4079, 10.1002/adfm.201203754
Wu, 2015, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem Rev, 115, 2559, 10.1021/cr5006809
Wada, 2010, Piezoelectric properties of high Curie temperature barium titanate-bismuth perovskite-type oxide system ceramics, J Appl Phys, 108, 10.1063/1.3481390
Rojac, 2014, BiFeO3 ceramics: processing, electrical, and electromechanical properties, J Am Ceram Soc, 97, 1993, 10.1111/jace.12982
Lee, 2015, High-performance lead-free piezoceramics with high Curie temperatures, Adv Mater, 27, 6976, 10.1002/adma.201502424
Liu, 2009, Large piezoelectric effect in Pb-Free ceramics, Phys Rev Lett, 103, 10.1103/PhysRevLett.103.257602
Acosta, 2017, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives, Appl Phys Rev, 4, 10.1063/1.4990046
Tou, 2009, Properties of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free piezoelectric ceramics and its application to ultrasonic cleaner, Jpn J Appl Phys, 48, 10.1143/JJAP.48.07GM03
Doshida, 2013, Investigation of high-power properties of (Bi,Na,Ba)TiO3 and (Sr,Ca)2NaNb5O15 piezoelectric ceramics, Jpn J Appl Phys, 52, 10.7567/JJAP.52.07HE01
Hejazi, 2014, High power performance of manganese-doped BNT-based Pb-Free piezoelectric ceramics, J Am Ceram Soc, 97, 3192, 10.1111/jace.13098
Krauss, 2011, BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process, J Eur Ceram Soc, 31, 1857, 10.1016/j.jeurceramsoc.2011.02.032
Ohbayashi, 2017, Lead-free piezoelectric (K,Na)NbO3-based ceramic with planar-mode coupling coefficient comparable to that of conventional lead zirconate titanate, Jpn J Appl Phys, 56, 10.7567/JJAP.56.061501
Ohbayashi, 2016, Piezoelectric properties and microstructure of (K,Na)NbO3–KTiNbO5 composite lead-free piezoelectric ceramic
CerPoTech - Ceramic Powder Technology AS. www.cerpotech.com (accessed on October 2017).
Malič, 2015, Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials, 8, 8117, 10.3390/ma8125449
Gao, 2016, Base metal Co-Fired multilayer piezoelectrics, Actuators, 5, 1, 10.3390/act5010008
Webber, 2017, Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications, Smart Mater Struct, 26, 10.1088/1361-665X/aa590c
Compiled from a survey of reagent grade suppliers' online catalogues.
Matsuoka, 2014, KNN-NTK composite lead-free piezoelectric ceramic, J Appl Phys, 116, 10.1063/1.4898586
Calculated from the number of PZT producers world-wide and estimates of their average production quantities.
Krüger, 2003, Bismuth, bismuth alloys, and bismuth compounds, 171
Ibn-Mohammed, 2016, Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics, Energy Environ Sci, 9, 3495, 10.1039/C6EE02429G
Hirschman, 1945
Herfindahl, 1950
Gaultois, 2013, Data-driven review of thermoelectric materials: performance and resource considerations, Chem Mater, 25, 2911, 10.1021/cm400893e
Randall, 2005, High strain piezoelectric multilayer actuators - a material science and engineering challenge, J Electroceram, 14, 177, 10.1007/s10832-005-0956-5
Interactive Ellingham Diagram Tool. www.doitpoms.ac.uk/tlplib/ellingham_diagrams/(accessed on October 2017).
Kishi, 2003, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives, Jpn J Appl Phys, 42, 1, 10.1143/JJAP.42.1
Takayama, 2008
Cao, 1993, Structure and properties at the ferroelectric electrode interface between lead-zirconate-titanate and copper, J Am Ceram Soc, 76, 3019, 10.1111/j.1151-2916.1993.tb06603.x
Florian, 2007
Florian, 2014
Piezo Actuators for Fuel Injection Systems—Most Reliable and Cost-efficient. https://en.tdk.eu/tdk-en/373562/tech-library/articles/applications–-cases/applications–-cases/most-reliable-and-cost-efficient/1039300 (accessed on November 2017).
Kobayashi, 2012, A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3, J Am Ceram Soc, 95, 2928, 10.1111/j.1551-2916.2012.05266.x
Morozov, 2011, Interaction of modified (K,Na)NbO3 ceramics with Ag-Containing electrodes, J Am Ceram Soc, 94, 3591, 10.1111/j.1551-2916.2011.04607.x
Kobayashi, 2013, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn J Appl Phys, 52, 10.7567/JJAP.52.09KD07
Kawada, 2009, (K,Na)NbO3-Based multilayer piezoelectric ceramics with nickel inner electrodes, APEX, 2
Hayashi, 2012, Reliability of nickel inner electrode lead-free multilayer piezoelectric ceramics, Jpn J Appl Phys, 51, 10.1143/JJAP.51.09LD01
Kawada, 2015, Potassium sodium niobate-based lead-free piezoelectric multilayer ceramics Co-Fired with nickel electrodes, Materials, 8, 7423, 10.3390/ma8115389
Donnelly, 2009, Refined model of electromigration of Ag/Pd electrodes in multilayer PZT ceramics under extreme humidity, J Am Ceram Soc, 92, 405, 10.1111/j.1551-2916.2008.02891.x
Iwagami, 2016, Diffusion behavior of Ag electrodes into (Bi1/2Na1/2)TiO3 ceramics, J Ceram Soc Jpn, 124, 644, 10.2109/jcersj2.16016
Gao, 2016, Demonstration of copper Co-Fired (Na,K)NbO3 multilayer structures for piezoelectric applications, J Am Ceram Soc, 99, 2017, 10.1111/jace.14207
Nagata, 2010, Electric-field-induced strain for (Bi1/2Na1/2)TiO3-based lead-free multilayer actuator, J Ceram Soc Jpn, 118, 726, 10.2109/jcersj2.118.726
Schuetz, 2010, The chemical interaction of silver-palladium alloy electrodes with bismuth-based piezomaterials, J Am Ceram Soc, 93, 1142, 10.1111/j.1551-2916.2009.03568.x
Ahn, 2015, Low-temperature sintering of Bi0.5(Na,K)0.5TiO3 for multilayer ceramic actuators, J Am Ceram Soc, 98, 1877, 10.1111/jace.13564
Feltz, 2012
Yesner, 2015
Wang, 2014, Study on (Ba,Ca)(Ti,Zr)O3 dielectric cofired with copper electrode, Jpn J Appl Phys, 53, 10.7567/JJAP.53.061501
Malič, 2018, Review of methods for powder-based processing
Reed, 1995
Li, 2002, Dissolution and dispersion behavior of barium carbonate in aqueous suspensions, J Am Ceram Soc, 85, 2977, 10.1111/j.1151-2916.2002.tb00566.x
Lewis, 2000, Colloidal processing of ceramics, J Am Ceram Soc, 83, 2341, 10.1111/j.1151-2916.2000.tb01560.x
Kaushal, 2013, Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 powder surface treated against hydrolysis - a key for a successful aqueous processing, J Mater Chem C, 1, 4846, 10.1039/c3tc30741g
Bai, 2015, (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics-The critical role of processing on properties, J Eur Ceram Soc, 35, 3445, 10.1016/j.jeurceramsoc.2015.05.010
Sun, 2015, Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics, Ceram Int, 41, 555, 10.1016/j.ceramint.2014.08.104
Jaffe, 1971
Kainz, 2014, Solid state synthesis and sintering of solid solutions of BNT-xBKT, J Eur Ceram Soc, 34, 3685, 10.1016/j.jeurceramsoc.2014.04.040
Haugen, 2015, Sintering of sub-micron K0.5Na0.5NbO3 powders fabricated by spray pyrolysis, J Eur Ceram Soc, 35, 1449, 10.1016/j.jeurceramsoc.2014.11.011
Koruza, 2014, Initial stage sintering mechanism of NaNbO3 and implications regarding the densification of alkaline niobates, J Eur Ceram Soc, 34, 1971, 10.1016/j.jeurceramsoc.2014.01.035
Popovič, 2015, Vapour pressure and mixing thermodynamic properties of the KNbO3-NaNbO3 system, RSC Adv, 5, 76249, 10.1039/C5RA11874C
German, 2009, Review: liquid phase sintering, J Mater Sci, 44, 1, 10.1007/s10853-008-3008-0
Zuo, 2006, Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics, J Am Ceram Soc, 89, 2010, 10.1111/j.1551-2916.2006.00991.x
Chen, 2000, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 404, 168, 10.1038/35004548
Rahaman, 2003
Munafò, 2017, A manifesto for reproducible science, Nat. Hum. Behav., 1, 1, 10.1038/s41562-016-0021
Hagh, 2007, Property-processing relationship in lead-free (K,Na,Li)NbO3-solid solution system, J Electroceram, 18, 339, 10.1007/s10832-007-9171-x
Hreščak, 2013, The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate, J Eur Ceram Soc, 33, 3065, 10.1016/j.jeurceramsoc.2013.07.006
Ihlefeld, 2016, Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations, J Am Ceram Soc, 99, 2537, 10.1111/jace.14387
Benčan, 2011, Approaches for a reliable compositional analysis of alkaline-based lead-free perovskite ceramics using microanalytical methods, J Adv Dielect, 1, 41, 10.1142/S2010135X11000057
Scott, 2008, Ferroelectrics go bananas, J Phys-Condens Mat, 20
Cain, 2014
Waser, 2005
Fett, 2000, Measurement of Young's moduli for lead zirconate titanate (PZT) ceramics, J Test Eval, 28, 27, 10.1520/JTE12071J
Chima-Okereke, 2011, The elastic properties of ferroelectric thin films measured using nanoindentation, vol.140
Damjanovic, 2012, Elastic, dielectric, and piezoelectric anomalies and Raman spectroscopy of 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3, Appl Phys Lett, 100, 10.1063/1.4714703
Vögler, 2017, Temperature-dependent volume fraction of polar nanoregions in lead-free (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Phys Rev B, 95, 10.1103/PhysRevB.95.024104
Carpenter, 2015, Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy, J Phys-Condens Mat, 27
Zhang, 2001, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals, J Appl Phys, 90, 3471, 10.1063/1.1390494
Lushnikov, 2008, Anomalous dispersion of the elastic constants at the phase transformation of the PbMg1/3Nb2/3O3 relaxor ferroelectric, Phys Rev B, 77, 10.1103/PhysRevB.77.104122
Fett, 2002, Young's modulus of soft PZT from partial unloading tests, Ferroelectrics, 274, 67, 10.1080/00150190213958
Cordero, 2010, Phase transitions and phase diagram of the ferroelectric perovskite(Na0.5Bi0.5)1−xBaxTiO3 by anelastic and dielectric measurements, Phys Rev B, 81, 10.1103/PhysRevB.81.144124
Cheng, 1996, Anelastic relaxation associated with the motion of domain walls in barium titanate ceramics, J Mater Sci, 31, 4141, 10.1007/BF00352680
Chen, 2014, Influence of thermal history on relaxation process in barium titanate ceramics, Ceram Int, 40, 6241, 10.1016/j.ceramint.2013.11.080
Salje, 2013, Elastic excitations in BaTiO3 single crystals and ceramics: mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy, Phys Rev B, 87, 10.1103/PhysRevB.87.014106
Carpenter, 2012, Elastic and anelastic relaxations in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3: II. Strain-order parameter coupling and dynamic softening mechanisms, J Phys-Condens Mat, 24
Ursic, 2013, Anelastic relaxor behavior of Pb(Mg1/3Nb2/3)O3, Appl Phys Lett, 103, 10.1063/1.4818665
Kamlah, 2001, Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena, Continuum Mech Therm, 13, 219, 10.1007/s001610100052
Schneider, 2007, Influence of electric field and mechanical stresses on the fracture of ferroelectrics, Annu Rev Mater Res, 37, 491, 10.1146/annurev.matsci.37.052506.084213
Quinn, 2008, 846
2016
Denkhaus, 2017, Short crack fracture toughness in (1−x)(Na1/2Bi1/2)TiO3–xBaTiO3 relaxor ferroelectrics, J Am Ceram Soc, 100, 4760, 10.1111/jace.15008
Lucato, 2003, Crack-growth-velocity-dependent R-curve behavior in lead zirconate titanate, J Am Ceram Soc, 86, 1037, 10.1111/j.1151-2916.2003.tb03417.x
Munz, 1999
Fett, 1999, Tensile and bending strength of piezoelectric ceramics, J Mater Sci Lett, 18, 1899, 10.1023/A:1006698724548
Fett, 1998, Nonsymmetric deformation behavior of lead zirconate titanate determined in bending tests, J Am Ceram Soc, 81, 269, 10.1111/j.1151-2916.1998.tb02332.x
Schader, 2016, Stress-modulated relaxor-to-ferroelectric transition in lead-free (Na1/2Bi1/2)TiO3−BaTiO3 ferroelectrics, Phys Rev B, 93, 10.1103/PhysRevB.93.134111
Brandt, 2014, Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics, J Appl Phys, 115, 10.1063/1.4879395
Wefring, 2016, Electrical conductivity and ferroelastic properties of Ti-substituted solid solutions (1-x)BiFeO3 - x Bi0.5K0.5TiO3, J Eur Ceram Soc, 36, 497, 10.1016/j.jeurceramsoc.2015.09.044
Wang, 2017, Electromechanical properties of CaZrO3 modified (K,Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions, J Am Ceram Soc, 100, 2116, 10.1111/jace.14661
Huan, 2016, Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO3-based ceramics, Sci Rep-Uk, 6
Martin, 2014, Effect of domain structure on the mechanical and piezoelectric properties of lead-free alkali niobate ceramics, Jpn J Appl Phys, 53, 10.7567/JJAP.53.09PB09
Takahashi, 2017, vol.5, 242
Davis, 2006, Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals, Phys Rev B, 73, 10.1103/PhysRevB.73.014115
Araki, 2013, Mechanical behaviour of Br0.5Sr0.5Co0.8Fe0.2O3-δ under uniaxial compression, Scripta Mater, 69, 278, 10.1016/j.scriptamat.2013.04.020
Lynch, 1996, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater, 44, 4137, 10.1016/S1359-6454(96)00062-6
Schader, 2015, Mechanical stability of piezoelectric properties in ferroelectric perovskites, J Appl Phys, 117, 10.1063/1.4919815
Ochoa, 2016, Extensive domain wall contribution to strain in a (K,Na)NbO3-based lead-free piezoceramics quantified from high energy X-ray diffraction, J Eur Ceram Soc, 36, 2489, 10.1016/j.jeurceramsoc.2016.03.022
Iamsasri, 2013, Analysis methods for characterizing ferroelectric/ferroelastic domain reorientation in orthorhombic perovskite materials and application to Li-doped Na0.5K0.5NbO3, J Mater Sci, 48, 6905, 10.1007/s10853-013-7495-2
Gao, 2014, Major contributor to the large piezoelectric response in (1-x)Ba(Zr0.2Ti0.8)O3 - x(Ba0.7Ca0.3)TiO3 ceramics: domain wall motion, Appl Phys Lett, 104, 10.1063/1.4885675
Iamsasri, 2015, Electric field-induced phase transitions in Li-modified Na0.5K0.5NbO3 at the polymorphic phase boundary, J Appl Phys, 117, 10.1063/1.4905613
Guo, 2014, Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3, Phys Rev B, 90, 10.1103/PhysRevB.90.014103
Ehara, 2016, Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 ceramics, J Appl Phys, 120, 10.1063/1.4966614
Sommer, 1993, Polar metastability and an electric-field-induced phase-transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3, Phys Rev B, 48, 13230, 10.1103/PhysRevB.48.13230
Bobnar, 1999, Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate, Phys Rev B, 60, 6420, 10.1103/PhysRevB.60.6420
dos Santos e Lucato, 2001, Constraint-induced crack initiation at electrode edges in piezoelectric ceramics, Acta Mater, 49, 2751, 10.1016/S1359-6454(01)00169-0
Cain, 2001, 20
Webber, 2014, Determination of the true operational range of a piezoelectric actuator, J Am Ceram Soc, 97, 2842, 10.1111/jace.13024
Lodeiro, 2005
Wang, 1999, Tip deflection and blocking force of soft PZT-based cantilever RAINBOW actuators, J Am Ceram Soc, 82, 103, 10.1111/j.1151-2916.1999.tb01729.x
Mauck, 2000, Piezoelectric hydraulic pump development, J Intel Mat Syst Str, 11, 758, 10.1106/HC2A-ABR9-21H8-2TJB
Brünahl, 2002, Piezoelectric shear mode drop-on-demand inkjet actuator, Sensor Actuat a-Phys, 101, 371, 10.1016/S0924-4247(02)00212-1
Rice, 1976, Effect of microstructure on rate of machining of ceramics, J Am Ceram Soc, 59, 330, 10.1111/j.1151-2916.1976.tb10977.x
Arai, 2009, Ultra-precision grinding of PZT ceramics-Surface integrity control and tooling design, Int J Mach Tool Manu, 49, 998, 10.1016/j.ijmachtools.2009.05.013
Uchino, 2006, Loss mechanisms and high power piezoelectrics, J Mater Sci, 41, 217, 10.1007/s10853-005-7201-0
Uchino, 2017
Kutnjak, 2015, Electrocaloric effect: theory, measurements, and applications
Tachibana, 2008, Thermal conductivity of perovskite ferroelectrics, Appl Phys Lett, 93, 10.1063/1.2978072
Genenko, 2015, Mechanisms of aging and fatigue in ferroelectrics, Mater Sci Eng B-Adv, 192, 52, 10.1016/j.mseb.2014.10.003
Li, 2014, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3, Nat Mater, 13, 31, 10.1038/nmat3782
Seo, 2017, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3, J Eur Ceram Soc, 37, 1429, 10.1016/j.jeurceramsoc.2016.11.045
Li, 2013, (K,Na)NbO3-Based lead-free piezoceramics: fundamental aspects, processing Technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715
Peddigari, 2014, Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics, AIP Adv, 4, 10.1063/1.4892856
Kizaki, 2006, Defect control for low leakage current in K0.5Na0.5NbO3 single crystals, Appl Phys Lett, 89, 10.1063/1.2357859
Liu, 2016, Orientation-dependent electromechanical properties of Mn-doped (Li,Na,K)(Nb,Ta)O3 single crystals, Appl Phys Lett, 109, 152902, 10.1063/1.4964465
Nowotny, 1991, Defect chemistry of BaTiO3, Solid State Ionics, 49, 135, 10.1016/0167-2738(91)90079-Q
Daniels, 1976, Defect chemistry and electrical-conductivity of doped barium-titanate ceramics, Philips Res Rep, 31, 487
Ogihara, 2009, Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics, J Am Ceram Soc, 92, 110, 10.1111/j.1551-2916.2008.02798.x
Kumar, 2016, Conduction mechanisms in BaTiO3-Bi(Zn1/2Ti1/2)O3 ceramics, J Am Ceram Soc, 99, 3047, 10.1111/jace.14313
Slouka, 2014, Defect chemistry and transport properties of Nd-doped Pb(ZrxTi1-x)O3, J Electroceram, 33, 221, 10.1007/s10832-014-9954-9
Lupascu, 2004
Glaum, 2014, Electric fatigue of lead- free piezoelectric materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811
Glaum, 2011, Temperature and driving field dependence of fatigue processes in PZT bulk ceramics, Acta Mater, 59, 6083, 10.1016/j.actamat.2011.06.017
Yao, 2013, Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics, Appl Phys Lett, 103, 192907, 10.1063/1.4829150
Zhang, 2016, High bipolar fatigue resistance of BCTZ lead-free piezoelectric ceramics, J Am Ceram Soc, 99, 174, 10.1111/jace.13927
Rojas, 2017, Influence of composition on the unipolar electric fatigue of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 lead-free piezoceramics, Am Ceram Soc, 100, 4699, 10.1111/jace.15013
Zhang, 2008, Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics, Appl Phys Lett, 92
Luo, 2011, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-Based lead-free piezoceramics, J Am Ceram Soc, 94, 3927, 10.1111/j.1551-2916.2011.04605.x
Patterson, 2012, Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics, Appl Phys Lett, 101, 10.1063/1.4738770
Rödel, 1984, Degradation of Mn-Doped BaTiO3 ceramic under a high DC electric-field, J Mater Sci, 19, 3515, 10.1007/BF02396925
Waser, 1990, DC electrical degradation of perovskite-type titanates .1, Ceramics. J Am Ceram Soc, 73, 1645, 10.1111/j.1151-2916.1990.tb09809.x
Wojtyniak, 2013, Electro-degradation and resistive switching of Fe-doped SrTiO3 single crystal, J Appl Phys, 113, 10.1063/1.4793632
Okayasu, 2010, Fatigue failure characteristics of lead zirconate titanate piezoelectric ceramics, J Eur Ceram Soc, 30, 713, 10.1016/j.jeurceramsoc.2009.09.014
Fett, 1999, Mechanical fatigue of a soft PZT ceramic under pulsating tensile loading, J Mater Sci Lett, 18, 1895, 10.1023/A:1006646712736
Salz, 2005, Cyclic fatigue crack growth in PZT under mechanical loading, J Am Ceram Soc, 88, 1331, 10.1111/j.1551-2916.2005.00235.x