Accumulation of errors in numerical simulations of chemically reacting gas dynamics

Acta Astronautica - Tập 117 - Trang 338-355 - 2015
N.N. Smirnov1,2,3, V.B. Betelin1,2, V.F. Nikitin1,3, L.I. Stamov1,2,3, D.I. Altoukhov1
1Moscow M.V.Lomonosov State University, Moscow, 119992, Russia
2Scientific Research Institute for System Studies of Russian Academy of Sciences, Moscow 117218, Russia
3LLC “Center for Numerical Modeling”, Zelenograd 124482, Moscow, Russia

Tài liệu tham khảo

Smirnov, 2014, Detonation engine fed by acetylene–oxygen mixture, Acta Astronaut., 104, 134, 10.1016/j.actaastro.2014.07.019 Smirnov, 2009, Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition, J. Propuls. Power, 25, 593, 10.2514/1.33078 Nikitin, 2009, Pulse detonation engines: technical approaches, Acta Astronaut., 64, 281, 10.1016/j.actaastro.2008.08.002 Wang, 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow, Int. J. Hydrogen Energy, 39, 11792, 10.1016/j.ijhydene.2014.05.162 Heidari, 2014, Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture, Int. J. Hydrogen Energy, 39, 21317, 10.1016/j.ijhydene.2014.10.066 Wu, 2014, Numerical investigation software stabilization of hydrogen–air rotating detonation engines, Int. J. Hydrogen Energy, 39, 15803, 10.1016/j.ijhydene.2014.07.159 PhylippovYu., 2012, Fluid mechanics of pulse detonation thrusters, Acta Astronaut., 76, 115, 10.1016/j.actaastro.2012.02.007 Smirnov, 2014, Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrogen Energy, 39, 1122, 10.1016/j.ijhydene.2013.10.097 Smirnov, 2014, Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39, 10748, 10.1016/j.ijhydene.2014.04.150 Smirnov, 2015, Supercomputing simulations of detonation of hydrogen-air mixtures, Int. J. Hydrogen Energy., 40, 11059, 10.1016/j.ijhydene.2015.07.027 Smirnov, 2010, Deflagration to detonation transition in gases in tubes with cavities, J. Eng. Phys. Thermophys., 83, 1287, 10.1007/s10891-010-0448-6 Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 10.1016/0021-9991(78)90023-2 Liska, 2003, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. Sci. Comput., 25, 995, 10.1137/S1064827502402120 van Leer, 1979, Towards the ultimate conservative difference scheme. A second order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Liou, 1996, A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364, 10.1006/jcph.1996.0256 Fletcher, 1991 Novikov, 2011, L-stable (4,2)-method of fourth order to solving stiff problems, VestnikSamGU – Nat. Sci. Ser., 59 Koren, 1993, A robust upwind discretisation method for advection, diffusion and source terms, 117 NVIDIA CUDA, Programming Guide, 2014. 〈http://developer.nvidia.com/cuda-downloads〉. Betelin, 2013, Supercomputer modeling of hydrogen combustion in rocket engines, Acta Astronautica, 89, 46, 10.1016/j.actaastro.2013.03.001 Gelfand, 2009 Khomik, 2013, On some conditions for detonation initiation downstream of a perforated plate, Shock Waves, 23, 207, 10.1007/s00193-012-0409-4 Gelfand, 2010, On the efficiency of semi-closed blast inhibitors, Shock Waves, 20, 317, 10.1007/s00193-010-0250-6 Gelfand, 2002, The selection of the effective blast reduction method when detonating explosives, J. Phys. IV, 12, Pr7 Babkin, 2012, Fast combustion of gases in the systems with hydraulic resistance, Combust. Explos. Shock Waves, 48, 35, 10.1134/S0010508212030045 Silnikov, 2014, Analytical solutions for Prandtl–Meyer wave–oblique shock overtaking interaction, Acta Astronaut., 99, 175, 10.1016/j.actaastro.2014.02.025 Silnikov, 2014, Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity, Acta Astronaut., 97, 38, 10.1016/j.actaastro.2013.12.010