Accumulation of errors in numerical simulations of chemically reacting gas dynamics
Tài liệu tham khảo
Smirnov, 2014, Detonation engine fed by acetylene–oxygen mixture, Acta Astronaut., 104, 134, 10.1016/j.actaastro.2014.07.019
Smirnov, 2009, Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition, J. Propuls. Power, 25, 593, 10.2514/1.33078
Nikitin, 2009, Pulse detonation engines: technical approaches, Acta Astronaut., 64, 281, 10.1016/j.actaastro.2008.08.002
Wang, 2014, Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow, Int. J. Hydrogen Energy, 39, 11792, 10.1016/j.ijhydene.2014.05.162
Heidari, 2014, Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture, Int. J. Hydrogen Energy, 39, 21317, 10.1016/j.ijhydene.2014.10.066
Wu, 2014, Numerical investigation software stabilization of hydrogen–air rotating detonation engines, Int. J. Hydrogen Energy, 39, 15803, 10.1016/j.ijhydene.2014.07.159
PhylippovYu., 2012, Fluid mechanics of pulse detonation thrusters, Acta Astronaut., 76, 115, 10.1016/j.actaastro.2012.02.007
Smirnov, 2014, Modeling and simulation of hydrogen combustion in engines, Int. J. Hydrogen Energy, 39, 1122, 10.1016/j.ijhydene.2013.10.097
Smirnov, 2014, Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39, 10748, 10.1016/j.ijhydene.2014.04.150
Smirnov, 2015, Supercomputing simulations of detonation of hydrogen-air mixtures, Int. J. Hydrogen Energy., 40, 11059, 10.1016/j.ijhydene.2015.07.027
Smirnov, 2010, Deflagration to detonation transition in gases in tubes with cavities, J. Eng. Phys. Thermophys., 83, 1287, 10.1007/s10891-010-0448-6
Sod, 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 10.1016/0021-9991(78)90023-2
Liska, 2003, Comparison of several difference schemes on 1D and 2D test problems for the Euler equations, SIAM J. Sci. Comput., 25, 995, 10.1137/S1064827502402120
van Leer, 1979, Towards the ultimate conservative difference scheme. A second order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1
Liou, 1996, A sequel to AUSM: AUSM+, J. Comput. Phys., 129, 364, 10.1006/jcph.1996.0256
Fletcher, 1991
Novikov, 2011, L-stable (4,2)-method of fourth order to solving stiff problems, VestnikSamGU – Nat. Sci. Ser., 59
Koren, 1993, A robust upwind discretisation method for advection, diffusion and source terms, 117
NVIDIA CUDA, Programming Guide, 2014. 〈http://developer.nvidia.com/cuda-downloads〉.
Betelin, 2013, Supercomputer modeling of hydrogen combustion in rocket engines, Acta Astronautica, 89, 46, 10.1016/j.actaastro.2013.03.001
Gelfand, 2009
Khomik, 2013, On some conditions for detonation initiation downstream of a perforated plate, Shock Waves, 23, 207, 10.1007/s00193-012-0409-4
Gelfand, 2010, On the efficiency of semi-closed blast inhibitors, Shock Waves, 20, 317, 10.1007/s00193-010-0250-6
Gelfand, 2002, The selection of the effective blast reduction method when detonating explosives, J. Phys. IV, 12, Pr7
Babkin, 2012, Fast combustion of gases in the systems with hydraulic resistance, Combust. Explos. Shock Waves, 48, 35, 10.1134/S0010508212030045
Silnikov, 2014, Analytical solutions for Prandtl–Meyer wave–oblique shock overtaking interaction, Acta Astronaut., 99, 175, 10.1016/j.actaastro.2014.02.025
Silnikov, 2014, Two-dimensional over-expanded jet flow parameters in supersonic nozzle lip vicinity, Acta Astronaut., 97, 38, 10.1016/j.actaastro.2013.12.010