A natural perturbation method with symmetric secant stiffness for stability analyses of quasi-perfect thin-walled structures
Tài liệu tham khảo
Timoshenko, 1961
Simitses, 2006
Bathe, 1996
Zienkiewicz, 2000
Nash, 1960, Recent advances in the buckling of thin shells, Appl. Mech. Rev., 13, 161
Hoff, 1965, Low buckling stresses of axially compressed circular cylindrical shells of finite length, J. Appl. Mech., 32, 533, 10.1115/1.3627255
Budiansky, 1966, A survey of some buckling problems, AIAA J., 4, 1505, 10.2514/3.3727
Stein, 1968, Some recent advances in the investigation of shell buckling, AIAA J., 6, 2339, 10.2514/3.4992
Simitses, 1986, Buckling and post buckling of imperfect cylindrical shells: a review, Appl. Mech. Rev., 39, 1517, 10.1115/1.3149506
Teng, 1996, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev., 49, 263, 10.1115/1.3101927
Mang, 2006, Conversion from imperfection-sensitive into imperfection-insensitive elastic structures I: Theory, Comput. Methods Appl. Math., 195, 1422
Schranz, 2006, Conversion from imperfection-sensitive into imperfection-insensitive elastic structures II: Numerical investigation, Comput. Methods Appl. Math., 195, 1458
Lorenz, 1908, Achsensymmetrische verzerrungen in dünwandigen hohlzylinder, Z. Ver. Deutsch Ing., 52, 1766
Timoshenko, 1910, Einige stabilitätsprobleme der elastizitätstheorie, Z. Math. Phys., 58, 337
Southwell, 1914, On the general theory of elastic stability, Philos. Trans. R. Soc. Lond. Ser. A Pap. A Math. Phys., 213, 187
Donnell, 1934, A new theory for the buckling of thin cylinders under axial compression, Trans. ASME, 56, 795
Stein, 1962, The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support, 217
Von Kármán, 1941, The buckling of thin cylindrical shells under axial compression, J. Aeronaut. Sci., 8, 303, 10.2514/8.10722
Köiter, 1945
Hutchinson, 1965, Axial buckling of pressurized imperfect cylindrical shells, AIAA J., 3, 1461, 10.2514/3.3169
Hutchinson, 1970, Postbuckling theory, Appl. Mech. Rev., 23, 1353
Weingarten, 1965, Elastic stability of thin-walled cylindrical and conical shells under axial compression, AIAA J., 3, 500, 10.2514/3.2893
Ullah, 2009, Buckling of thin-walled cylindrical shells under axial compression, Internat. J. Numer. Methods Engrg., 79, 1332, 10.1002/nme.2612
Hutchinson, 2010, Knockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress, Int. J. Solids Struct., 47, 1443, 10.1016/j.ijsolstr.2010.02.009
Wagner, 2017, Robust design criterion for axially loaded cylindrical shells - Simulation and Validation, Thin-Walled Struct., 115, 154, 10.1016/j.tws.2016.12.017
Wagner, 2017, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells - Development and Validation, Compos. Struct., 173, 281, 10.1016/j.compstruct.2017.02.031
Wagner, 2018, Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis, Int. J. Mech. Sci., 135, 410, 10.1016/j.ijmecsci.2017.11.020
Wagner, 2019, Robust knockdown factors for the design of cylindrical shells under axial compression: Analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct., 127, 629, 10.1016/j.tws.2018.01.041
Wang, 2018, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct., 130–131, 232, 10.1016/j.ijsolstr.2017.09.029
Wang, 2019, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct., 164, 37, 10.1016/j.ijsolstr.2019.01.001
Horák, 2006, Cylinder buckling: the mountain pass as an organizing center, SIAM J. Appl. Math., 66, 1793, 10.1137/050635778
Thompson, 2017, Probing shells against buckling: a non-destructive technique for laboratory testing, Int. J. Bifurcation Chaos, 27, 1, 10.1142/S0218127417300488
Hutchinson, 2018, Imperfections and energy barriers in shell buckling, Int. J. Solids Structs., 148–149, 157, 10.1016/j.ijsolstr.2018.01.030
Groh, 2019, On the role of localizations in buckling of axially compressed cylinders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 475
Kobayashi, 2012, Path-tracing analysis for post-buckling process of elastic cylindrical shells under axial compression, Thin-Walled Struct., 61, 180, 10.1016/j.tws.2012.05.018
Esslinger, 1970, Hochgeschwindigkeitsaufnahmen von Beulvorgang dunnwandiger, axialbelasteter Zylinder, Der. Stahlbau., 39, 73
Yamaki, 1984
Singer, 2002
Audoly, 2020, Localization in spherical shell buckling, J. Mech. Phys. Solids, 136, 10.1016/j.jmps.2019.103720
Lanzo, 1995, Asymptotic post-buckling analysis of rectangular plates by HC finite elements, Internat. J. Numer. Methods Engrg., 38, 2325, 10.1002/nme.1620381403
Garcea, 2017, Deformation modes for the post-critical analysis of thin-walled compressed members by a Koiter semi-analytic approach, Int. J. Solids Structs., 110–111, 367, 10.1016/j.ijsolstr.2016.09.010
Garcea, 2017, Accurate and efficient a posteriori account of geometrical imperfections in Koiter finite element analysis, Internat. J. Numer. Methods Engrg., 112, 1154, 10.1002/nme.5550
Shi, 1992, A simple indicator and branch switching technique for hidden unstable equilibrium paths, Finite Elem. Anal. Des., 12, 303, 10.1016/0168-874X(92)90039-F
Deml, 1997, Direct evaluation of the worst imperfection shape in shell buckling, Comput. Methods Appl. Math., 149, 201
Kröplin, 1985, An energy perturbation applied to nonlinear structural analysis, Comput. Methods Appl. Math., 52, 885
Pontow, 2007, Perturbation sensitivity and limit loads of shells, Proc. Appl. Math. Mech., 8, 10327, 10.1002/pamm.200810327
Oñate, 1995, On the derivation and possibilities of the secant stiffness matrix for nonlinear finite element analysis, Comput. Mech., 15, 572, 10.1007/BF00350269
Oñate, 1996, A critical displacement approach for predicting structural instability, Comput. Methods Appl. Math., 134, 135
Yao, 2018, An experimental verification of the one-dimensional static willis-form equations, Int. J. Solids Struct., 134, 283, 10.1016/j.ijsolstr.2017.06.005
Sun, 2019, Buckling analyses of spherical shells by the finite element method based on the Willis-form equations, Int. J. Appl. Mech., 11, 10.1142/S1758825119500911
Timoshenko, 1969
Eshelby, 1975, The elastic energy-momentum tensor, J. Elasticity, 5, 321, 10.1007/BF00126994
Nemat-Nasser, 1993
Kienzler, 2000
Maugin, 2013, 249
Haftka, 1971, Adaption of Koiter’s method to finite element analysis of snap-through buckling behavior, Int. J. Solids Struct., 7, 1427, 10.1016/0020-7683(71)90055-2
Hassan, 2019, Modeling and buckling analysis of rectangular plates in ANSYS, Int. J. Eng. Appl. Sci., 11, 310
Peterson, 1959, Compression tests on circular cylinders stiffened longitudinally by closely spaced Z-section stringers
Babcock, 1962, The effect of initial imperfections on the buckling stress of cylindrical shells, 135
Árbocz, 1969, The effect of general imperfections on the buckling cylindrical shells, ASME J. Appl. Mech., 36, 349, 10.1115/1.3564582