A natural perturbation method with symmetric secant stiffness for stability analyses of quasi-perfect thin-walled structures

Thin-Walled Structures - Tập 164 - Trang 107870 - 2021
Yixiao Sun1, Zhihai Xiang1
1Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China

Tài liệu tham khảo

Timoshenko, 1961 Simitses, 2006 Bathe, 1996 Zienkiewicz, 2000 Nash, 1960, Recent advances in the buckling of thin shells, Appl. Mech. Rev., 13, 161 Hoff, 1965, Low buckling stresses of axially compressed circular cylindrical shells of finite length, J. Appl. Mech., 32, 533, 10.1115/1.3627255 Budiansky, 1966, A survey of some buckling problems, AIAA J., 4, 1505, 10.2514/3.3727 Stein, 1968, Some recent advances in the investigation of shell buckling, AIAA J., 6, 2339, 10.2514/3.4992 Simitses, 1986, Buckling and post buckling of imperfect cylindrical shells: a review, Appl. Mech. Rev., 39, 1517, 10.1115/1.3149506 Teng, 1996, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev., 49, 263, 10.1115/1.3101927 Mang, 2006, Conversion from imperfection-sensitive into imperfection-insensitive elastic structures I: Theory, Comput. Methods Appl. Math., 195, 1422 Schranz, 2006, Conversion from imperfection-sensitive into imperfection-insensitive elastic structures II: Numerical investigation, Comput. Methods Appl. Math., 195, 1458 Lorenz, 1908, Achsensymmetrische verzerrungen in dünwandigen hohlzylinder, Z. Ver. Deutsch Ing., 52, 1766 Timoshenko, 1910, Einige stabilitätsprobleme der elastizitätstheorie, Z. Math. Phys., 58, 337 Southwell, 1914, On the general theory of elastic stability, Philos. Trans. R. Soc. Lond. Ser. A Pap. A Math. Phys., 213, 187 Donnell, 1934, A new theory for the buckling of thin cylinders under axial compression, Trans. ASME, 56, 795 Stein, 1962, The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support, 217 Von Kármán, 1941, The buckling of thin cylindrical shells under axial compression, J. Aeronaut. Sci., 8, 303, 10.2514/8.10722 Köiter, 1945 Hutchinson, 1965, Axial buckling of pressurized imperfect cylindrical shells, AIAA J., 3, 1461, 10.2514/3.3169 Hutchinson, 1970, Postbuckling theory, Appl. Mech. Rev., 23, 1353 Weingarten, 1965, Elastic stability of thin-walled cylindrical and conical shells under axial compression, AIAA J., 3, 500, 10.2514/3.2893 Ullah, 2009, Buckling of thin-walled cylindrical shells under axial compression, Internat. J. Numer. Methods Engrg., 79, 1332, 10.1002/nme.2612 Hutchinson, 2010, Knockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress, Int. J. Solids Struct., 47, 1443, 10.1016/j.ijsolstr.2010.02.009 Wagner, 2017, Robust design criterion for axially loaded cylindrical shells - Simulation and Validation, Thin-Walled Struct., 115, 154, 10.1016/j.tws.2016.12.017 Wagner, 2017, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells - Development and Validation, Compos. Struct., 173, 281, 10.1016/j.compstruct.2017.02.031 Wagner, 2018, Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis, Int. J. Mech. Sci., 135, 410, 10.1016/j.ijmecsci.2017.11.020 Wagner, 2019, Robust knockdown factors for the design of cylindrical shells under axial compression: Analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct., 127, 629, 10.1016/j.tws.2018.01.041 Wang, 2018, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct., 130–131, 232, 10.1016/j.ijsolstr.2017.09.029 Wang, 2019, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct., 164, 37, 10.1016/j.ijsolstr.2019.01.001 Horák, 2006, Cylinder buckling: the mountain pass as an organizing center, SIAM J. Appl. Math., 66, 1793, 10.1137/050635778 Thompson, 2017, Probing shells against buckling: a non-destructive technique for laboratory testing, Int. J. Bifurcation Chaos, 27, 1, 10.1142/S0218127417300488 Hutchinson, 2018, Imperfections and energy barriers in shell buckling, Int. J. Solids Structs., 148–149, 157, 10.1016/j.ijsolstr.2018.01.030 Groh, 2019, On the role of localizations in buckling of axially compressed cylinders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 475 Kobayashi, 2012, Path-tracing analysis for post-buckling process of elastic cylindrical shells under axial compression, Thin-Walled Struct., 61, 180, 10.1016/j.tws.2012.05.018 Esslinger, 1970, Hochgeschwindigkeitsaufnahmen von Beulvorgang dunnwandiger, axialbelasteter Zylinder, Der. Stahlbau., 39, 73 Yamaki, 1984 Singer, 2002 Audoly, 2020, Localization in spherical shell buckling, J. Mech. Phys. Solids, 136, 10.1016/j.jmps.2019.103720 Lanzo, 1995, Asymptotic post-buckling analysis of rectangular plates by HC finite elements, Internat. J. Numer. Methods Engrg., 38, 2325, 10.1002/nme.1620381403 Garcea, 2017, Deformation modes for the post-critical analysis of thin-walled compressed members by a Koiter semi-analytic approach, Int. J. Solids Structs., 110–111, 367, 10.1016/j.ijsolstr.2016.09.010 Garcea, 2017, Accurate and efficient a posteriori account of geometrical imperfections in Koiter finite element analysis, Internat. J. Numer. Methods Engrg., 112, 1154, 10.1002/nme.5550 Shi, 1992, A simple indicator and branch switching technique for hidden unstable equilibrium paths, Finite Elem. Anal. Des., 12, 303, 10.1016/0168-874X(92)90039-F Deml, 1997, Direct evaluation of the worst imperfection shape in shell buckling, Comput. Methods Appl. Math., 149, 201 Kröplin, 1985, An energy perturbation applied to nonlinear structural analysis, Comput. Methods Appl. Math., 52, 885 Pontow, 2007, Perturbation sensitivity and limit loads of shells, Proc. Appl. Math. Mech., 8, 10327, 10.1002/pamm.200810327 Oñate, 1995, On the derivation and possibilities of the secant stiffness matrix for nonlinear finite element analysis, Comput. Mech., 15, 572, 10.1007/BF00350269 Oñate, 1996, A critical displacement approach for predicting structural instability, Comput. Methods Appl. Math., 134, 135 Yao, 2018, An experimental verification of the one-dimensional static willis-form equations, Int. J. Solids Struct., 134, 283, 10.1016/j.ijsolstr.2017.06.005 Sun, 2019, Buckling analyses of spherical shells by the finite element method based on the Willis-form equations, Int. J. Appl. Mech., 11, 10.1142/S1758825119500911 Timoshenko, 1969 Eshelby, 1975, The elastic energy-momentum tensor, J. Elasticity, 5, 321, 10.1007/BF00126994 Nemat-Nasser, 1993 Kienzler, 2000 Maugin, 2013, 249 Haftka, 1971, Adaption of Koiter’s method to finite element analysis of snap-through buckling behavior, Int. J. Solids Struct., 7, 1427, 10.1016/0020-7683(71)90055-2 Hassan, 2019, Modeling and buckling analysis of rectangular plates in ANSYS, Int. J. Eng. Appl. Sci., 11, 310 Peterson, 1959, Compression tests on circular cylinders stiffened longitudinally by closely spaced Z-section stringers Babcock, 1962, The effect of initial imperfections on the buckling stress of cylindrical shells, 135 Árbocz, 1969, The effect of general imperfections on the buckling cylindrical shells, ASME J. Appl. Mech., 36, 349, 10.1115/1.3564582