PIM2: a revised version of the Paediatric Index of Mortality

Intensive Care Medicine - Tập 29 - Trang 278-285 - 2003
Anthony Slater1, Frank Shann2, Gale Pearson3
1Women’s and Children’s Hospital, North Adelaide, Australia
2Royal Children’s Hospital, Parkville, Australia
3Birmingham Children’s Hospital, Birmingham, UK

Tóm tắt

To revise the Paediatric Index of Mortality (PIM) to adjust for improvement in the outcome of paediatric intensive care. International, multi-centre, prospective, observational study. Twelve specialist paediatric intensive care units and two combined adult and paediatric units in Australia, New Zealand and the United Kingdom. All children admitted during the study period. In the analysis, 20,787 patient admissions of children less than 16 years were included after 220 patients transferred to other ICUs and one patient still in ICU had been excluded. None. A revised model was developed by forward and backward logistic regression. Variable selection was based on the effect of including or dropping variables on discrimination and fit. The addition of three variables, all derived from the main reason for ICU admission, improved the fit across diagnostic groups. Data from seven units were used to derive a learning model that was tested using data from seven other units. The model fitted the test data well (deciles of risk goodness-of-fit χ2 8.14, p=0.42) and discriminated between death and survival well [area under the receiver operating characteristic (ROC) plot 0.90 (0.89–0.92)]. The final PIM2 model, derived from the entire sample of 19,638 survivors and 1,104 children who died, also fitted and discriminated well [χ2 11.56, p=0.17; area 0.90 (0.89–0.91)]. PIM2 has been re-calibrated to reflect the improvement that has occurred in intensive care outcome. PIM2 estimates mortality risk from data readily available at the time of ICU admission and is therefore suitable for continuous monitoring of the quality of paediatric intensive care.

Tài liệu tham khảo

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell F (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636 Lemeshow S, Teres D, Klar J, Spitz Avrunin J, Gehlbach SH, Rapoport J (1993) Mortality probability models (MPM II) based on an international cohort of intensive care unit patients. JAMA 270:2478–2486 Le Gall J, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European / North American multicenter study. JAMA 270:2957–2963 Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24:743–752 Shann F, Pearson G, Slater A, Wilkinson K (1997) Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med 23:201–207 Richardson DK, Corcoran JD, Escobar GJ, Lee SK (2001) SNAP-II and SNAPPE-II: Simplified newborn illness severity and mortality risk scores. J Pediatr 138:92–100 Anonymous (1993) The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The International Neonatal Network. Lancet 342:193–198 Pearson GA, Stickley J, Shann F (2001) Calibration of the paediatric index of mortality in UK paediatric intensive care units. Arch Dis Child 84:125–128 Copas JB (1983) Plotting p against x. Appl Stat 32:25–31 Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843 Hosmer DW, Lemeshow S (2000) Applied logistic regression. John Wiley, New York Collett D (1991) Modelling Binary Data. Chapman & Hall, London Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i:307–310 Normand SL, Glickman ME, Sharma RG, McNeil BJ (1996) Using admission characteristics to predict short-term mortality from myocardial infarction in elderly patients. JAMA 275:1322–1328