Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels
Tóm tắt
Tài liệu tham khảo
Bartmann ML, Weiss S, Schaeffel F, Zrenner E (1992) Diurnal variations in axial eye growth and their relation to retinal dopamine levels in chickens. Invest Ophthalmol Visual Sci 33 (Suppl):1052
Bock G, Widdows K (1990) Myopia and the control of eye growth. CIBA Foundation Symposium 155, Wiley, Chichester, UK, pp 1–256
Gottlieb MD, Nickla DL, Wallman J (1992) The effects of abnormal light/dark cycles in the development of form deprivation myopia. Invest Ophthalmol Visual Sci 33 (Suppl): 1052
Hodos W, Kuenzel WJ (1984) Retinal image degradation produces ocular enlargement in chicks. Invest Ophthalmol Visual Sci 25:652–659
Iuvone PM, Galli CL, Garison-Gund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902
Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM (1991) Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Visual Sci 32:1674–1677
Jonsson G (1983) Chemical lesioning techniques: monoamine neurotoxins. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 1. Elsevier Science Publishers B.V., pp 463–497
Lauber JK (1987) Review: Light-induced avian glaucoma as an animal model for human primary glaucoma. J Ocular Pharmacol 3:77–100
Li T, Troilo D, Glasser A, Howland HC (1992a) Constant light produces severe corneal flattening and hyperopia in chickens. Invest Ophthalmol Visual Sci 33 (Suppl):2483
Li XX, Schaeffel F, Kohler K, Zrenner E (1992b) Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms and dopaminergic amacrine cells in the chicken. Visual Neurosci 9:483–492
Parkinson D, Rando RR (1983) Effects of light on dopamine metabolism in the chick retina. J Neurochem 40:39–46
Reme CE, Wirz-Justice A, Terman M (1991) The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J Biol Rhythms 6:5–29
Rohrer B, Spira AW, Stell WK, Wagner HJ (1992) The site of action of dopamine in form-deprivation myopia. Invest Ophthalmol Visual Sci 33 (Suppl): 1052
Schaeffel F, Howland HC (1988) Visual optics in normal and ametropic chickens. Clin Visual Sci 3:83–98
Schaeffel F, Howland HC (1991) Properties of visual feedback loops controlling eye growth and refractive state in the chicken. Vision Res 31:717–734
Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error, and eye growth in chickens. Vision Res 28:639–657
Stone RA, Lin T, Iuvone PM, Laties AM (1989) Retinal dopamine and deprivation myopia. Proc Natl Acad Sci USA 86:704–706
Stone RA, Lin T, Iuvone PM, Laties AM (1990) Postnatal control of ocular growth: dopaminergic mechanisms. In: Bock G, Widdows K (eds) CIBA Foundation Symposium 155, “Myopia andthe control of eye growth”. Wiley, Chichester, UK, pp 45–63
Troilo D, Wallman J (1987) Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res 6:993–999
Underwood HT, Siopes T, Barrett RK (1988) Does a biological clock reside in the eye of quail? J Biol Rhythms 3:323–331
Wallman J, Turkel J, Trachtman J (1978) Extreme myopia produced by modest changes in visual experience. Science 201:1249–1251
Wallman J, Xu C, Wildoset C, Krebs W, Gottlieb M, Marran L, Nickla D (1992) Moving the retina: a third mechanism of focusing the eye. Invest Ophthalmol Visual Sci 33 (Suppl): 1053