The McKay–Thompson series of Mathieu Moonshine modulo two

The Ramanujan Journal - Tập 34 - Trang 319-328 - 2014
Thomas Creutzig1, Gerald Höhn2, Tsuyoshi Miezaki3
1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
2Kansas State University, Manhattan, USA
3Yamagata University, Yamagata, Japan

Tóm tắt

In this note, we describe the parity of the coefficients of the McKay–Thompson series of Mathieu moonshine. As an application, we prove a conjecture of Cheng, Duncan, and Harvey stated in connection with umbral moonshine for the case of Mathieu moonshine.

Tài liệu tham khảo

Cheng, M.C.N.: \(K3\) surfaces, \(N{=}4\) dyons, and the Mathieu group \(M_{24}\). Commun. Number Theory Phys. 4(4), 623–657 (2010) Cheng, M.C.N., Duncan, J.F.R.: On rademacher sums, the largest Mathieu group, and the holographic modularity of moonshine. Commun. Number Theory Phys. 6, 697 (2012) Cheng, M.C.N., Duncan, J.F.R., Harvey, J.A.: Umbral Moonshine, arXiv:1204.2779 Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A.: Atlas of Finite Groups. Oxford University Press, Oxford (1985) Conway, J.H., Norton, S.P.: Monstrous Moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979) Dabholkar, A., Murthy, S., Zagier, D.: Quantum black holes, wall crossing, and mock modular forms, arXiv:1208.4074 Eguchi, T., Hikami, K.: Note on twisted elliptic genus of \(K3\) surface. Phys. Lett. B 694, 446–455 (2011) Eguchi, T., Hikami, K.: Twisted elliptic genus for \(K3\) and Borcherds product. Lett. Math. Phys. 102, 203–222 (2012). arXiv:1112.5928 Eguchi, T., Ooguri, H., Tachikawa, Y.: Notes on the \(K3\) surface and the Mathieu group \(M_{24}\). Exp. Math. 20, 91–96 (2011) Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster, Pure and Applied Mathematics. Academic Press Inc., Boston (1988) Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu twining characters for \(K3\). J. High Energy Phys. 058(9), 20 (2010) Gaberdiel, M.R., Hohenegger, S., Volpato, R.: Mathieu Moonshine in the elliptic genus of \(K3\). J. High Energy Phys. 062(10), 24 (2010) Gannon, T.: Much ado about Mathieu, preprint (2012), arXiv:1211.5531 Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Springer, Berlin (1984) Miezaki, T.: On the Mathieu mock theta function. Proc. Jpn. Acad. Ser. A 88, 28–30 (2012) Miezaki, T.: Congruences on the Fourier coefficients for mock theta functions, which relate finite groups (preprint) Miezaki, T., Waldherr, M.: Congruence of the Fourier coefficients of the Mathieu mock theta function (submitted) Ono, K.: The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004 Serre, J.-P.: Représentations linéaires des groupes finis. Springer, New York (1977) Sturm, J.: On the congruence of modular forms, Number theory (New York, 1984–1985), 275–280, Lecture Notes in Math., 1240, Springer, Berlin, 1987