Load balancing ad hoc on-demand multipath distance vector (LBAOMDV) routing protocol
Tóm tắt
Researchers working in the area of a mobile ad hoc network (MANET) strive to conserve the battery energy of individual nodes to reduce the frequency of a node breakdown. The model of multiple-path on demand data routing protocols has been an effective scheme for the majority of MANET application scenarios in recent times. The availability of multiple paths for data transfer can both prove to be effective as well as dismal in certain cases. The selection of the most suitable path is always tricky, if not associated with exact metrics of concern. The contribution of this work is the introduction of the load balancing ad hoc on-demand multipath distance vector (LBAOMDV) protocol, an adaptation of AOMDV, an ad hoc on-demand multipath distance vector protocol. The adaption is done in order to enhance the reliability of the given network by considering the parameter of path weight (energy) of all the available multiple paths. The LBAOMDV regulates the fair usage of both node energy and available bandwidth by exploiting the availability of multiple paths for data transfer. The uniform distribution of data across multiple paths enhances the quality of service of the given network by ensuring fair usage of both network bandwidth and node energy. The LBAOMDV protocol ensures reduced node breakdowns, thus enhancing the reliability of the given MANET.
Tài liệu tham khảo
S. Corson, J. Macker, Mobile ad hoc networking (MANET): routing protocol performance issues and evaluation considerations, RFC2501, Naval Research Laboratory, University of Maryland, (1999).
C Hongju, Xiong, AV Vasilakos, Y Laurence Tianruo, C Guolong, Z Xiaofang, Nodes organization for channel assignment with topology preservation in multiradio wireless mesh networks. Ad Hoc Networks 10(5), 60773 (2012).
L Mo, L Zhenjiang, AV Vasilakos, A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues. Proc. IEEE 101(12), 25382557 (2013).
M. Reza. Rahimi, Nalini, Venkatasubramania, MAPCloud: mobile applications on an elastic and scalable 2tier cloud architecture, IEEE/ACM UCC (2012).
Yanjun Yao; Qing Cao; Vasilakos, A.V, EDAL: An energy efficient delay aware, and lifetime balancing data collection protocol for wireless sensor networks. MASS (2013), IEEE International Conference, 182-190.
S Yuning, L Liang, M Huadong, AV Vasilakos, A biology based algorithm to minimal exposure problem of wireless sensor networks. IEEE Trans. Netw. Serv. Manag. 11(3), 417430 (2014).
S Sengupta, S Das, M Nasir, AV Vasilakos, W Pedrycz, An evolutionary multi objective sleep scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans Syst Man Cybern Part C 42(6), 10931102 (2012).
W Xiaofei, AV Vasilakos, C Min, L Yunhao, K Ted Taekyoung, A survey of green mobile networks: opportunities and challenges. MONET 17(1), 4–20 (2012).
Niranjan Potnis, Atulya Mahajan, Mobility models for vehicular ad hoc network simulations, Proceedings of the 44th annual Southeast regional conference, ACM New York, Melbourne, Florida, (2006).
E. Royer and C-K. Toh, A review of current routing protocols for ad hoc mobile wireless networks, IEEE Journal Personal Communications, 6(2), 46-55, (1999).
S Marwaha, D Srinivasan, CK Tham, A Vasilakos, Evolutionary fuzzy multi objective routing for wireless mobile ad hoc networks, Evolutionary Computation, in Proceedings of the 2004 Congress on Evolutionary Computation (CEC '04), 2 1964–1971, (2004).
D Der-Rong, J Jhong-Yan, Delay-constrained survivable multicast routing problem in WDM networks. Comput Commun 35(10), 1172–1184 (2012).
Z Xin Ming, Z Yue, Y Fan, AV Vasilakos, Interference-based topology control algorithm for delay-constrained mobile ad hoc networks, in mobile computing. IEEE Trans 14(4), 742–754 (2015).
C Busch, R Kannan, AV Vasilakos, Approximating congestion + dilation in networks via “quality of routing” games. IEEE Trans. Computers 61(9), 12701283 (2012).
S Mueller, RP Tsang, D Ghosal, Multipath routing in mobile ad hoc networks: issues and challenges, in Performance tools and applications to networked systems, vol. 2965 of lecture notes in computer science (Springer, Berlin, Germany, 2004), 209–234.
Peng Li; Song Guo; Shui Yu; Vasilakos, A.V., CodePipe: an opportunistic feeding and routing protocol for reliable multicast with pipelined network coding, in INFOCOM, 2012 Proceedings IEEE, 100-108, 25-30 (2012).
W Lou, W Liu, Y Zhang, Performance optimization using multipath routing in mobile ad hoc and wireless sensor networks. Combinator. Optim. Commun. Netw. 2, 117–146 (2006).
L Peng, G Song, Y Shui, AV Vasilakos, Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Trans Parallel Distrib Syst 25(12), 32643273 (2014).
R. N. Noorani, Comparative analysis of reactive MANET routing protocols under the traffic of TCP VEGAS with mobility considerations, International Conference on Emerging Technologies, 457-461, 19-20 Oct. (2009).
D. Johnson and D. Maltz., Dynamic source routing in ad hoc wireless networks, In Mobile Computing book, The Kluwer International Series in Engineering and Computer Science, Springer USA, 353 153-181, (1996).
C. E. Perkins and E. M. Royer, Ad hoc on-demand distance-vector routing, In IEEE Workshop on Mobile Computing Systems and Applications, Louisiana, 90-100, (1999).
V. D. Park & M. S. Corson, A highly adaptive distributed routing algorithm for mobile wireless networks, In Proceedings of the INFOCOM 97, IEEE, Japan, 3 1405-1413, (1997).
C. E. Perkins & P. Bhagwat, Highly dynamic destination-sequenced distance vector routing (DSDV) for mobile computers. In ACM SIG-COMM, 234-244, (1994).
Y-S Yen, H-C Chao, R-S Chang, A Vasilakos, Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Math Comput Model Int J 53(11-12), 2238–2250 (2011).
B Berger, M Brady, D Brown, T Leighton, Nearly optimal algorithms and bounds for multilayer channel routing. J ACM 42(2), 500–542 (1995).
Vasilakos, W MinYou, CDC: compressive data collection for wireless sensor networks. IEEE Trans Parallel Distrib Syst 26(8), 21882197 (2015).
Xi Xu, Rashid Ansari, Ashfaq Khokhar, Athanasios V. Vasilakos, Hierarchical Data Aggregation Using Compressive Sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3) March (2015).
Liu Xiang, Jun Luo, Athanasios V. Vasilakos: Compressed data aggregation for energy efficient wireless sensor networks. SECON, IEEE, USA: 46-54, (2011).
AV Vasilakos, L Zhe, S Gwendal, Y Wei, Information centric network: research challenges and opportunities. J Netw Comput Appl 52, 110 (2015).
S Zhengguo, Y Shusen, Y Yifan, A Vasilakos, J McCann, L Kin, A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. Wirel Commun IEEE 20(6), 91–98 (2013).
X Yang, P Miao, J Gibson, GG Xie, D Ding-Zhu, AV Vasilakos, Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. Mob Comput IEEE Trans 11(10), 1538–1554 (2012).
N Chilamkurti, S Zeadally, A Vasilakos, V Sharma, Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, Hindawi Publishing Corporation 2009, 9 (2009).
Pham, P.P.; Perreau, S. Performance analysis of reactive shortest path and multipath routing mechanism with load balance, INFOCOM, San Francisco, CA, USA, 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 1 251–259, (2003).
M.R. Pearlman, Z.J. Haas, P. Sholander and S.S. Tabrizi,On the impact of alternate path routing for load balancing in mobile ad hoc networks, Proceedings of the ACM MobiHoc, ACM, Boston, 3-10, (2000).
S Yin, X Lin, MALB: MANET adaptive load balancing. IEEE Vehicular Technol Conf 4, 2843–2847 (2004).
P Merindol, J-J Pansiot, S Cateloin, Improving load balancing with multipath routing, Proceedings of 17th International Conference on Computer Communications and Networks, 2008 (ICCCN’08, Seattle, Washington, USA, 27–38, (2008).
B Nagarjun, L Sathish, S Chaitanya, Md. Ansari, S Tapaswi, Packet count based routing mechanism–a load balancing approach in MANETS. Networked Digital Technologies, Communications in Computer and Information Science 88, 669–675 (2010).
B. Sharma, S. Chugh, V. Jain, Energy efficient load balancing approach to improve AOMDV routing in MANET, In 2014 Fourth International Conference on Communication Systems and Network Technologies, IEEE, India, (2014).
X Qi, Q Wang, F Jiang, Multi-path routing improved protocol in AODV based on nodes energy. Int J Futur Gener Commun Netw 8(1), 207–214 (2015).
S. Ijlal Ali Shah, M. Ilyas & H.T. Mouftah, Pervasive communications handbook, In CRC Press Taylor & Francis Group, LLC, ISBN-10: 1420051091, ISBN-13: 978-1420051094, (2011).
A Vasilakos, MP Saltouros, AF Atlassis, W Pedrycz, Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions (2003).
S Thrasyvoulos, R Rao Naveed, T Thierry, O Katia, V Athanasios, Routing for disruption tolerant networks: taxonomy and design. Wirel Netw 16(8), 2349–2370 (2010).
Moustafa Youssef, Magdy Abd El-Azim, Mohamed El-Derini, Channel assignment with closeness multipath routing in cognitive networks, Alexandria Engineering Journal, 52(4) 665-670, (2013).
Z Yuanyuan, X Kai, L Deshi, AV Vasilakos, Directional routing and scheduling for green vehicular delay tolerant networks. Wirel Netw 19(2), 161173 (2013).
Y Liu, N Xiong, Y Zhao, AV Vasilakos, J Gao, Y Jia, Multi-layer clustering routing algorithm for wireless vehicular sensor networks. Commun IET 4(7), 810-816 (2010).
W. Pattara-Atikom, P. Krishnamurthy, Quality of service support in IEEE 802.11 Wireless Lan, IEEE Wireless Communications, 10(3) 26-34, (2003).
Mahesh K. Marina and Samir R. Das, Ad hoc on-demand multipath distance vector routing, in wireless communications and mobile computing, Wireless Comm, 6 92-96, (2006).
H Kai, L Jun, L Yang, AV Vasilakos, Algorithm design for data communications in duty-cycled wireless sensor networks: a survey. Commun Mag IEEE 51(7), 107–113 (2011).
Meng, T.; Wu, F.; Yang, Z.; Chen, G.; Vasilakos, A., Spatial reusability-aware routing in multi-hop wireless networks, in Computers, IEEE Transactions on, PP(99) 1-13, (2015).
Y Yanjun, C Qing, AV Vasilakos, EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. Netw IEEE/ACM Trans 23(3), 810–823 (2015).
Zhang, I., Dhurandher, S.K., Anpalagan, A., Vasilakos, A.V., Routing in opportunistic networks. Springer book, New York, (2013).
L Liang, S Yuning, Z Haiyang, M Huadong, AV Vasilakos, Physarum optimization: a biology-inspired algorithm for the Steiner Tree Problem in networks. Comput IEEE Trans 64(3), 818–831 (2015).
The Network Simulator - ns-2 available on: http://www.isi.edu/nsnam/ns/. September 2015.