Embeddable quantum homogeneous spaces

Journal of Mathematical Analysis and Applications - Tập 411 - Trang 574-591 - 2014
Paweł Kasprzak1,2, Piotr M. Sołtan1
1Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Poland
2Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warsaw, Poland

Tài liệu tham khảo

Baaj, 1993, Unitaires multiplicatifs et dualité pour les produits croisés de C⁎-algèbres, Ann. Sci. Ecole Norm. Sup. (4), 26, 425, 10.24033/asens.1677 Baaj, 2005, Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, 4, 135, 10.1017/S1474748005000034 Baaj, 2003, Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., 235, 139, 10.1007/s00220-002-0780-6 Daws, 2012, Closed quantum subgroups of locally compact quantum groups, Adv. Math., 231, 3473, 10.1016/j.aim.2012.09.002 Enock, 1999, Sous-facteurs intermédiaires et groupes quantiques mesurés, J. Operator Theory, 42, 305 Franz, 2009, On idempotent states on quantum groups, J. Algebra, 322, 1774, 10.1016/j.jalgebra.2009.05.037 Franz, 2009, A new characterisation of idempotent states on finite and compact quantum groups, Compt. Rend. Math., 347, 991, 10.1016/j.crma.2009.06.015 Hajac Husemoller, 1994, Fibre Bundles, vol. 20 Izumi, 1998, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal., 155, 25, 10.1006/jfan.1997.3228 Kasprzak, 2012, On a certain approach to quantum homogeneous spaces, Comm. Math. Phys., 313, 237, 10.1007/s00220-012-1491-2 Kustermans, 2000, Locally compact quantum groups, Ann. Sci. Ecole Norm. Sup. (4), 33, 837, 10.1016/S0012-9593(00)01055-7 Kustermans, 2000, The operator algebra approach to quantum groups, Proc. Natl. Acad. Sci. USA, 97, 547, 10.1073/pnas.97.2.547 Kustermans, 2003, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., 92, 68, 10.7146/math.scand.a-14394 Lance, 1995, Hilbert C⁎-Modules: A Toolkit for Operator Algebraists, vol. 210 Majid, 1991, Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang–Baxter equations, J. Funct. Anal., 95, 291, 10.1016/0022-1236(91)90031-Y Masuda, 2003, A C⁎-algebraic framework for the quantum groups, Int. J. Math., 14, 903, 10.1142/S0129167X03002071 Meyer, 2011, Homomorphisms of quantum groups, Münster J. Math., 4, 101 Podleś, 1987, Quantum spheres, Lett. Math. Phys., 14, 193, 10.1007/BF00416848 Podleś, 1989 Podleś, 1995, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys., 170, 1, 10.1007/BF02099436 Pusz, 2003, Functional form of unitary representations of the quantum “az+b” group, Rep. Math. Phys., 52, 309, 10.1016/S0034-4877(03)90019-X Pusz Pusz Salmi, 2011, Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, J. Funct. Anal., 261, 1, 10.1016/j.jfa.2011.03.003 Salmi Salmi Salmi, 2012, Idempotent states on locally compact quantum groups, Q. J. Math., 63, 1009, 10.1093/qmath/har023 Sołtan, 2005, New quantum “az+b” groups, Rev. Math. Phys., 17, 313, 10.1142/S0129055X05002339 Sołtan, 2010, Examples of non-compact quantum group actions, J. Math. Anal. Appl., 372, 224, 10.1016/j.jmaa.2010.06.045 Takesaki, 1971, Duality and subgroups, Ann. of Math., 93, 344, 10.2307/1970778 Vaes, 2001, Examples of locally compact quantum groups through the bicrossed product construction, 341 Vaes, 2001, The unitary implementation of a locally compact quantum group action, J. Funct. Anal., 180, 426, 10.1006/jfan.2000.3704 Vaes, 2001 Vaes, 2005, A new approach to induction and imprimitivity results, J. Funct. Anal., 229, 317, 10.1016/j.jfa.2004.11.016 Vaes, 2003, Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., 175, 1, 10.1016/S0001-8708(02)00040-3 Woronowicz, 1991, Unbounded elements affiliated with C⁎-algebras and non-compact quantum groups, Comm. Math. Phys., 136, 399, 10.1007/BF02100032 Woronowicz, 2001, Quantum ‘az+b’ group on complex plane, Int. J. Math., 12, 461, 10.1142/S0129167X01000836