Embeddable quantum homogeneous spaces
Tài liệu tham khảo
Baaj, 1993, Unitaires multiplicatifs et dualité pour les produits croisés de C⁎-algèbres, Ann. Sci. Ecole Norm. Sup. (4), 26, 425, 10.24033/asens.1677
Baaj, 2005, Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, 4, 135, 10.1017/S1474748005000034
Baaj, 2003, Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., 235, 139, 10.1007/s00220-002-0780-6
Daws, 2012, Closed quantum subgroups of locally compact quantum groups, Adv. Math., 231, 3473, 10.1016/j.aim.2012.09.002
Enock, 1999, Sous-facteurs intermédiaires et groupes quantiques mesurés, J. Operator Theory, 42, 305
Franz, 2009, On idempotent states on quantum groups, J. Algebra, 322, 1774, 10.1016/j.jalgebra.2009.05.037
Franz, 2009, A new characterisation of idempotent states on finite and compact quantum groups, Compt. Rend. Math., 347, 991, 10.1016/j.crma.2009.06.015
Hajac
Husemoller, 1994, Fibre Bundles, vol. 20
Izumi, 1998, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal., 155, 25, 10.1006/jfan.1997.3228
Kasprzak, 2012, On a certain approach to quantum homogeneous spaces, Comm. Math. Phys., 313, 237, 10.1007/s00220-012-1491-2
Kustermans, 2000, Locally compact quantum groups, Ann. Sci. Ecole Norm. Sup. (4), 33, 837, 10.1016/S0012-9593(00)01055-7
Kustermans, 2000, The operator algebra approach to quantum groups, Proc. Natl. Acad. Sci. USA, 97, 547, 10.1073/pnas.97.2.547
Kustermans, 2003, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., 92, 68, 10.7146/math.scand.a-14394
Lance, 1995, Hilbert C⁎-Modules: A Toolkit for Operator Algebraists, vol. 210
Majid, 1991, Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang–Baxter equations, J. Funct. Anal., 95, 291, 10.1016/0022-1236(91)90031-Y
Masuda, 2003, A C⁎-algebraic framework for the quantum groups, Int. J. Math., 14, 903, 10.1142/S0129167X03002071
Meyer, 2011, Homomorphisms of quantum groups, Münster J. Math., 4, 101
Podleś, 1987, Quantum spheres, Lett. Math. Phys., 14, 193, 10.1007/BF00416848
Podleś, 1989
Podleś, 1995, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys., 170, 1, 10.1007/BF02099436
Pusz, 2003, Functional form of unitary representations of the quantum “az+b” group, Rep. Math. Phys., 52, 309, 10.1016/S0034-4877(03)90019-X
Pusz
Pusz
Salmi, 2011, Compact quantum subgroups and left invariant C⁎-subalgebras of locally compact quantum groups, J. Funct. Anal., 261, 1, 10.1016/j.jfa.2011.03.003
Salmi
Salmi
Salmi, 2012, Idempotent states on locally compact quantum groups, Q. J. Math., 63, 1009, 10.1093/qmath/har023
Sołtan, 2005, New quantum “az+b” groups, Rev. Math. Phys., 17, 313, 10.1142/S0129055X05002339
Sołtan, 2010, Examples of non-compact quantum group actions, J. Math. Anal. Appl., 372, 224, 10.1016/j.jmaa.2010.06.045
Takesaki, 1971, Duality and subgroups, Ann. of Math., 93, 344, 10.2307/1970778
Vaes, 2001, Examples of locally compact quantum groups through the bicrossed product construction, 341
Vaes, 2001, The unitary implementation of a locally compact quantum group action, J. Funct. Anal., 180, 426, 10.1006/jfan.2000.3704
Vaes, 2001
Vaes, 2005, A new approach to induction and imprimitivity results, J. Funct. Anal., 229, 317, 10.1016/j.jfa.2004.11.016
Vaes, 2003, Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., 175, 1, 10.1016/S0001-8708(02)00040-3
Woronowicz, 1991, Unbounded elements affiliated with C⁎-algebras and non-compact quantum groups, Comm. Math. Phys., 136, 399, 10.1007/BF02100032
Woronowicz, 2001, Quantum ‘az+b’ group on complex plane, Int. J. Math., 12, 461, 10.1142/S0129167X01000836