Hydrothermal synthesis and investigation of optical properties of Nb5+-doped lithium silicate nanostructures

International Nano Letters - Tập 4 - Trang 1-9 - 2014
Abdolali Alemi1, Shahin Khademinia1, Sang Woo Joo2, Mahboubeh Dolatyari3, Akbar Bakhtiari4, Hossein Moradi5, Sorayya Saeidi6, Alireza Esmaeilzadeh7
1Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
2School of Mechanical Engineerng WCU nano research center, Yeungnam University, Gyongsan, South KOREA
3Laboratory of Nano Photonics & Nano Crystals, School of Engineering-Emerging Technologies, University of Tabriz, Tabriz, Iran
4Department of Chemistry, Faculty of Basic Sciences, Payame Noor University, Tehran, Iran
5Faculty of chemistry, Islamic Azad University, Ardabil Branch, Ard-abil, Iran
6Department of Geology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
7Dpartment of science and technology, University of Azad, Tehran Branch, Tehran, Iran

Tóm tắt

The hydrothermal synthesis and optical properties of Nb5+-doped lithium metasilicate and lithium disilicate nanomaterials were investigated. The microstructures and morphologies of the synthesized Li2 -2x Nb2x SiO3 + δ and Li2 -2x Nb2x Si2O5 + δ nanomaterials were studied by powder X-ray diffraction and scanning electron microscopy techniques, respectively. The synthesized niobium-doped lithium metasilicate and lithium disilicate nanomaterials, respectively, are isostructural with the standard bulk Li2SiO3 (space group Cmc21) and Li2Si2O5 (space group Ccc2) materials. The photoluminescence spectra of the synthesized materials are studied. The measured optical properties show dependence of the dopant amounts in the structure.

Tài liệu tham khảo

Kudo H, Okuno K, Ohira S: Tritium release behavior of ceramic breeder candidates for fusion reactors. J. Nucl. Mater. 1988, 155: 524. Wen G, Zheng X, Song L: Effects of P 2 O 5 and sintering temperature on microstructure and mechanical properties of lithium disilicate glass-ceramics. J. Acta. Mater. 2007, 55: 3583. 10.1016/j.actamat.2007.02.009 Yamaguchi T, Nair BN, Nakagawa K: Membranes for high temperature CO 2 separation: part II-lithium silicate based membranes. J. Membr. Sci. 2007, 294: 16. 10.1016/j.memsci.2007.01.028 Essaki K, Kato M, Nakagawa K: CO 2 removal at high temperature using packed bed of lithium silicate pellets. J. Ceram. Soc. Japan 2006, 114: 739. 10.2109/jcersj.114.739 Pfeiffer H, Bosch P, Bulbulian S: Synthesis of lithium silicates. J. Nucl. Mater. 1998, 257: 309. 10.1016/S0022-3115(98)00449-8 Mosqueda HA, Vazquez C, Bosch P, Pfeiffer H: Chemical sorption of carbon dioxide (CO 2 ) on lithium oxide (Li 2 O). J. Chem. Mater. 2006, 18: 2307. 10.1021/cm060122b Ignatovych M, Holovey V, Vidczy T, Baranyai P: Spectral study on manganese-and silver-doped lithium tetraborate phosphors. J. Radiat. Phys. Chem. 2007, 76: 1527. 10.1016/j.radphyschem.2007.02.066 Kumar GB, Buddhudu S: Synthesis and emission analysis of RE 3+ (Eu 3+ or Dy 3+ ):Li 2 TiO 3 ceramics. J. Ceram. Int. 2009, 35: 521. 10.1016/j.ceramint.2007.09.107 Romanowski WR, Sokolska I, Dsik GD, Golab S: Investigation of LiXO3 (X = Nb, Ta) crystals doped with luminescent ions: recent results. J. Alloys Compd. 2000, 300301: 152. Hreniak D, Speghini A, Bettinelli M, Strek W: Spectroscopic investigations of nanostructured LiNbO 3 doped with Eu 3+ . J. Lumin. 2006, 119–120: 219. Yang X, Ning G, Li X, Lin Y: Synthesis and luminescence properties of a novel Eu3 +-doped γ-LiAlO2 phosphor. J. Mater. Lett. 2007, 61: 4694. 10.1016/j.matlet.2007.03.011 Ilyushin GD: Phase relations in the LiOH-TiO 2 -SiO 2 -H 2 O system at 500°C and 0.1 GPa. J. Inorg. Mater. 2002, 9: 927. Ganesan M: Li 1- x Sm 1+ x SiO 4 as solid electrolyte for high temperature solid-state lithium batteries. J. Ionics. 2007, 13: 379. 10.1007/s11581-007-0110-2 Ganesan M, Dhananjeyan MVT, Sarangapani KB, Renganathan NG: Lithium ion conduction in sol-gel derived lithium samarium silicate solid electrolyte. J. Alloy Comp. 2008, 450: 452. 10.1016/j.jallcom.2006.10.126 Ganesan M: Synthesis and characterization of lithium holmium silicate solid electrolyte for high temperature lithium batteries. J App Electrochem. 2009, 39: 947. 10.1007/s10800-008-9754-5 Ganesan M: A new promising high temperature lithium battery solid electrolyte. J. Electrochem. Comm. 2007, 9: 1980. 10.1016/j.elecom.2007.05.012 Takeda N, Itagaki Y, Sadaoka Y: Ionic conductivity of Li x La 10- x (SiO 4 ) 6 O 3- x sinters. J. Cer. Soc. Japan. 2008, 116: 803. 10.2109/jcersj2.116.803 Victoria L, Trejo M, Fregoso-Israel E, Pfeiffer H: Textural, structural, and CO 2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li 4- x Na x SiO 4 ). J. Chem. Mater. 2008, 20: 7171. 10.1021/cm802132t Naik YP, Mohapatra M, Dahale ND, Seshagiri TK, Natarajan V, Godbole SV: Synthesis and luminescence investigation of RE 3+ (Eu 3+ , Tb 3+ and Ce 3+ )-doped lithium silicate (Li 2 SiO 3 ). J. Lumin. 2009, 129: 1225. 10.1016/j.jlumin.2009.06.001 Elbatal HA, Mandouh Z, Zayed H, Marzouk SY, Elkomy G, Hosny A: Gamma ray interactions with undoped and CuO-doped lithium disilicate glasses. J. Physica B: Cond. Mat. 2010, 405: 4755. 10.1016/j.physb.2010.08.071 Deng D, Xu S, Ju H, Zhao S, Wang H, Li C: Broadband near-infrared emission from Cr 4 + -doped transparent glass-ceramics based on lithium silicate. J Chem Phys Lett 2010, 486: 126. 10.1016/j.cplett.2009.12.063 Nakazawa T, Yokoyama K, Noda K: Ab initio MO study on hydrogen release from surface of lithium silicate. J. Nucl. Mater. 1998, 258–263: 571. Rodriguez VD, Rodriguez-Mendoza UR, Martin IR, Lavin V, Nunez P: Site distribution in Cr 3+ and Cr 3+ -Tm 3+ -doped alkaline silicate glasses. J. Lumin. 1997, 72–74: 446. Abd E, All S, Ezz-Eldin FM: Beam interactions with materials and atoms. Nucl. Inst. Met. Phys. Res. B 2010, 268: 49. 10.1016/j.nimb.2009.09.038 Alemi A, Khademinia S, Dolatyari M, Bakhtiari A: Hydrothermal synthesis, characterization, and investigation of optical properties of Sb 3+ -doped lithium silicates nanostructures. Int. Nano Lett. 2012, 2: 20. doi:10.1186/2228-5326-2-20 10.1186/2228-5326-2-20 Fu LF, Browning ND: Defects in Co-doped and (Co, Nb)-doped TiO 2 ferromagnetic thin films. J. App. Phys. 2006, 100: 123910. 10.1063/1.2402979 XU JW, Wang H, Jiang MH, Liu XY: Properties of Nb-doped ZnO transparent conductive thin films deposited by rf magnetron sputtering using a high quality ceramic target. J. Bull. Mat. Sci. 2010, 33: 119. 10.1007/s12034-010-0016-x Klissurska RD, Brooks KG, Reaney IM, Pawlaczyk C, Kosec M, Setter N: Effect of Nb doping on the microstructure of sol-gel-derived PZT thin films. J. Am. Ceram. Soc. 1995, 78: 1513. 10.1111/j.1151-2916.1995.tb08846.x Griswold EM, Sawyer M, Amm DT, Calder ID: The influence of niobium-doping on lead zirconate titanate ferroelectric thin films. Can. J. Phys. 1991, 69: 260. 10.1139/p91-043 Pereira M, Peixoto AG, Gomes MJM: Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. European Ceram. Soc. 2001, 21: 1353. 10.1016/S0955-2219(01)00017-6 Hardtl KH, Hennings D: Distribution of A-site and B-site vacancies in (Pb, La)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 1972, 55: 230–231. 10.1111/j.1151-2916.1972.tb11267.x Gutiérrez GM, Cruz D, Pfeiffer H, Bulbulian S: Low temperature synthesis of Li 2 SiO 3 : effect on its morphological and textural properties. J. Res. Lett. Mater. Sci. 2008. Zhang B, Easteal AJ: Effect of HNO 3 on crystalline phase evolution in lithium silicate powders prepared by sol-gel processes. J. Mater. Sci. 2008, 43: 5139. 10.1007/s10853-008-2736-5 Fuss T, Moguš-Milanković A, Ray CS, Lesher CE, Youngman R, Day DE: In situ crystallization of lithium disilicate glass: effect of pressure on crystal growth rate. J. Non-Cryst. Sol. 2006, 352: 4101. 10.1016/j.jnoncrysol.2006.06.038 Soares PC, Zanotto ED, Fokin VM, Jain H: TEM and XRD study of early crystallization of lithium disilicate glasses. J. Non-Cryst. Sol. 2003, 331: 217. 10.1016/j.jnoncrysol.2003.08.075 Zheng X, Wen G, Song L, Huang X: Effects of P 2 O 5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics. J. Acta Mater. 2008, 56: 549. 10.1016/j.actamat.2007.10.024 Mahmoud MM: Crystallization of lithium disilicate glass using variable frequency microwave processing. Virginia: Blacksburg; 2007. Ge S, Wang Q, Li J, Shao Q, Wang X: Controllable synthesis and formation mechanism of bow-tie-like Sb 2 O 3 nanostructures via a surfactant-free solvothermal route. J. All. Comp. 2010, 494: 169. 10.1016/j.jallcom.2010.01.064 Deng Z, Chen D, Tang F, Ren J, Muscat AJ: Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. J. Nano. Res. 2009, 2: 151. Grund CS, Hanusch K, Breunig JH, Wolf HU: Antimony and antimony compounds. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2006. De Jong BHW, Beerkins RGC, Van Nijnatten PA, Bourhis EL: Glass. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2005. Peiniger M, Piel H: A superconducting Nb 3 Sn coated multicell accelerating cavity. J. Nucl. Sci. 1985, 32: 3610. Moura S, Hernane R: Melting and purification of niobium. In Single Crystal–Large Grain Niobium Technology: AIP Conference Proceedings, 927th. Melville: American Institution of Physics; 2007:165. Zhou Y, Qiu Z, Lu M, Zhang A, Ma Q: Preparation and spectroscopic properties of Nb 2 O 5 nanorods. J. Lumin. 2008, 128: 1369. 10.1016/j.jlumin.2008.01.001 Marrero-Lopez D, Pena-Martinez J, Ruiz-Morales JC, Perez-Coll D, Martin-Sedeno MC, Nunez PJ: Boletin De La Sociedad Espanola De Structural and electrical characterisation of Nb 5+ and Cr 6+ substituted La 2 Mo 2 O 9 Cerámica y Vidrio. 2008, 47: 213. Moritani K, Tanaka S, Moriyama H: Production behavior of irradiation defects in lithium silicates and silica under ion beam irradiation. J. Nucl. Mat. 2000, 281: 106. 10.1016/S0022-3115(00)00364-0 Lide DR: CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press. Taylor and Francis; 2006.